Converting Fe−N−C Single-atom Catalyst to a New FeNxSey Cluster Catalyst for Proton-exchange Membrane Fuel Cells
Yang Zhao
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Pengfei Yin
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Yuanyuan Yang
College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 China
Search for more papers by this authorRuguang Wang
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorProf. Cairong Gong
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJisi Li
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJiaxin Guo
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorQuanlu Wang
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Tao Ling
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYang Zhao
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Pengfei Yin
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorDr. Yuanyuan Yang
College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021 China
Search for more papers by this authorRuguang Wang
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorProf. Cairong Gong
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJisi Li
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorJiaxin Guo
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorQuanlu Wang
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Tao Ling
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorAbstract
Iron-nitrogen-carbon (Fe−N−C) single-atom catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device operation. The construction of a new Fe coordination environment that is completely different from the square-planar Fe−N4 configuration in classic Fe−N−C catalyst is expected to break the current stability limits of Pt-free catalysts, which however remains unexplored. Here, we report, for the first time, the conversion of Fe−N−C catalyst to a new FeNxSey cluster catalyst, where the active Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms. Due to this unique Fe coordination configuration, the FeNxSey catalyst exhibits much better 4e− ORR activity and selectivity than the state-of-the-art Fe−N−C catalyst. Specifically, the yields of hydrogen peroxide (H2O2) and ⋅OH radicals on the FeNxSey catalyst are only one-quarter and one-third of that on the Fe−N−C counterpart, respectively. Therefore, the FeNxSey catalyst exhibits outstanding cyclic stability, losing only 10 mV in half-wave potential E1/2 after 10,000 potential cycles, much smaller than that of the Fe−N−C catalyst (56 mV), representing the most stable Pt-free catalysts ever reported for PEMFCs. More significantly, the 3D co-coordination structure effectively inhibits the Fe demetallization of the FeNxSey catalyst in the presence of H2O2. As a result, the FeNxSey based PEMFC shows excellent durability, with the current density attenuation significantly lower than that of the Fe−N−C based device after accelerated durability testing. Our work provides guidance for the development of next-generation Pt-free catalysts for PEMFCs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202419501-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Xiao, Q. Wang, G.-L. Xu, X. Qin, I. Hwang, C.-J. Sun, M. Liu, W. Hua, H.-W. Wu, S. Zhu, J.-C. Li, J.-G. Wang, Y. Zhu, D. Wu, Z. Wei, M. Gu, K. Amine, M. Shao, Nat. Catal. 2022, 5, 503.
- 2L. Chong, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. Liu, Science 2018, 362, 1276.
- 3L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Science 2016, 354, 1410.
- 4C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339.
- 5H. Wang, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, J. K. Nørskov, Yi Cui, Science 2016, 354, 1031.
- 6X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230.
- 7Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, 4998.
- 8N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
- 9J. Hwang, R. R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science 2017, 358, 751.
- 10J. Li, C. Zheng, E. Zhao, J. Mao, Y. Cheng, H. Liu, Z. Hu, T. Ling, PNAS 2023, 120, e2307901120.
- 11E. B. Agyekum, J. D. Ampah, T. Wilberforce, S. Afrane, C. Nutakor, Membranes 2022, 12, 1130.
- 12K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361.
- 13G. Reverdiau, A. Le Duigou, T. Alleau, T. Aribart, C. Dugast, T. Priem, Int. J. Hydrogen Energy 2021, 46, 39195.
- 14A. E. Hughes, N. Haque, S. A. Northey, S. Giddey, Resources 2021, 10, 93.
- 15K. Kumar, L. Dubau, F. Jaouen, F. Maillard, Chem. Rev. 2023, 123, 9265.
- 16C. H. Choi, C. Baldizzone, J. P. Grote, A. K. Schuppert, F. Jaouen, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2015, 54, 12753.
- 17G. Zhang, R. Chenitz, M. Lefèvre, S. Sun, J.-P. Dodelet, Nano Energy 2016, 29, 111.
- 18E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong, T. Zhao, Z. Jin, J. Ge, Z. Jiang, C. Liu, W. Xing, Angew. Chem. Int. Ed. 2019, 58, 12469.
- 19X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
- 20J. Yang, W. Liu, M. Xu, X. Liu, H. Qi, L. Zhang, X. Yang, S. Niu, D. Zhou, Y. Liu, Y. Su, J. F. Li, Z. Q. Tian, W. Zhou, A. Wang, T. Zhang, J. Am. Chem. Soc. 2021, 143, 14530.
- 21P. Li, Y. Jiao, Y. Ruan, H. Fei, Y. Men, C. Guo, Y. Wu, S. Chen, Nat. Commun. 2023, 14, 6936.
- 22A. Han, W. Sun, X. Wan, D. Cai, X. Wang, F. Li, J. Shui, D. Wang, Angew. Chem. Int. Ed. 2023, e202303185.
- 23X. Wan, Q. Liu, J. Liu, S. Liu, X. Liu, L. Zheng, J. Shang, R. Yu, J. Shui, Nat. Commun. 2022, 13, 2963.
- 24S. Liu, C. Li, M. J. Zachman, Y. Zeng, H. Yu, B. Li, M. Wang, J. Braaten, J. Liu, H. M. Meyer, M. Lucero, A. J. Kropf, E. E. Alp, Q. Gong, Q. Shi, Z. Feng, H. Xu, G. Wang, D. J. Myers, J. Xie, D. A. Cullen, S. Litster, G. Wu, Nat. Energy 2022, 7, 652.
- 25F. Luo, A. Roy, L. Silvioli, D. A. Cullen, A. Zitolo, M. T. Sougrati, I. C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U. I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, Nat. Mater. 2020, 19, 1215.
- 26Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615.
- 27H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479.
- 28H. Xie, X. Xie, G. Hu, V. Prabhakaran, S. Saha, L. Gonzalez-Lopez, A. H. Phakatkar, M. Hong, M. Wu, R. Shahbazian-Yassar, V. Ramani, M. I. Al-Sheikhly, D.-e. Jiang, Y. Shao, L. Hu, Nat. Energy 2022, 7, 281.
- 29Z. Miao, X. Wang, Z. Zhao, W. Zuo, S. Chen, Z. Li, Y. He, J. Liang, F. Ma, H. L. Wang, G. Lu, Y. Huang, G. Wu, Q. Li, Adv. Mater. 2021, 33, e2006613.
- 30X. Zhao, H. Cheng, X. Chen, Q. Zhang, C. Li, J. Xie, N. Marinkovic, L. Ma, J.-C. Zheng, K. Sasaki, J. Am. Chem. Soc. 2024, 146, 3010.
- 31R. Xie, C. Cheng, R. Wang, J. Li, E. Zhao, Y. Zhao, Y. Liu, J. Guo, P. Yin, T. Ling, ACS Catal. 2024, 14, 4471.
- 32H. Niu, L. Huang, Y. Qin, R. Qi, B. Mei, D. Wu, F. M. Li, B. You, Q. Li, Y. Yao, Z. Wang, T. Yao, S. Ding, W. Guo, Y. Chen, Y. Su, F. Song, B. Y. Xia, J. Am. Chem. Soc. 2024, 146, 22650.
- 33X. Cheng, X. Jiang, S. Yin, L. Ji, Y. Yan, G. Li, R. Huang, C. Wang, H. Liao, Y. Jiang, S. Sun, Angew. Chem. Int. Ed. 2023, 62, e202306166.
- 34R. Wang, L. Zhang, J. Shan, Y. Yang, J.-F. Lee, T.-Y. Chen, J. Mao, Y. Zhao, L. Yang, Z. Hu, T. Ling, Adv. Sci. 2022, 9, 2003619.
- 35H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63.
- 36Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254.
- 37A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
- 38Y. Li, H. Sun, L. Ren, K. Sun, L. Gao, X. Jin, Q. Xu, W. Liu, X. Sun, Angew. Chem. Int. Ed. 2024, 63, e202405334.
- 39K. Yuan, D. Lutzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen, U. Scherf, J. Am. Chem. Soc. 2020, 142, 2404.
- 40Q. J. Hong, S. V. Ushakov, A. van de Walle, A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2209630119.
- 41Deposition number https://www.ccdc.cam.ac.uk/services/structures?id=doi:10.1002/anie.202419501 2405464 (2405464 for FeNxSey) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe http://www.ccdc.cam.ac.uk/structures Access Structures service.
- 42N. Lazarevic, A. Baum, A. Milosavljevic, L. Peis, R. Stumberger, J. Bekaert, A. Solajic, J. Pesic, A. Wang, M. Scepanovic, A. M. M. Abeykoon, M. V. Milosevic, C. Petrovic, Z. V. Popovic, R. Hackl, Phys. Rev. B 2022, 106, 094510.
- 43L. C. Seefeldt, Z.-Y. Yang, D. A. Lukoyanov, D. F. Harris, D. R. Dean, S. Raugei, B. M. Hoffman, Chem. Rev. 2020, 120, 5082.
- 44C. F. Dickens, C. Kirk, J. K. Nørskov, J. Phys. Chem. C 2019, 123, 18960.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.