Nanocrystals with Aggregate Anionic Structure Enable Ion Transport Decoupling of Chain Segment Movement in Poly(ethylene oxide) Electrolytes
Jinze Hou
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Weiwei Xie
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLong Shang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorShuang Wu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuewei Cui
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Yixin Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Zhenhua Yan
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Kai Zhang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Yong Lu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJinze Hou
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Weiwei Xie
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLong Shang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorShuang Wu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuewei Cui
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorDr. Yixin Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Zhenhua Yan
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Kai Zhang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Yong Lu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
All-solid-state polymer electrolytes are promising for lithium batteries, but Li+ transport in these electrolytes relies on amorphous chain segment movement, leading to low Li+ mobility and poor mechanical strength. Here we propose a novel Li+ transport mechanism mediated by PEO3:LiBF4 nanocrystals (NCPB) with the aggregate (AGG) anionic structure, which enables a change from amorphous to crystalline phase dominated ion transport in all-solid-state PEO/LiBF4 electrolyte. Experiments and simulations reveal that the interaction between Li+ and F in NCPB with AGG anionic structure simultaneously restricts anion transport and reorients anions within the free volume of NCPB, resulting in a three-coordination intermediate to facilitate Li+ transport. The unique Li+ transport mechanism through NCPB makes the PEO/LiBF4 electrolyte with a high Li+ transference number (0.73) and remarkably increased mechanical strength (storage modulus >100 MPa) at 45 °C. As a result, the Li|LiFePO4 batteries with the ultrathin self-supported PEO/LiBF4 electrolyte (10 μm) exhibit significantly improved cycle life (97 % @ 468 cycles) compared to those with PEO/LiTFSI electrolyte (failed @ 68 cycles). This work demonstrates a novel ion transport mechanism for achieving selective and rapid Li+ transport.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202418783-sup-0001-misc_information.pdf12.4 MB | Supporting Information |
ange202418783-sup-0001-Supporting_Information_video_S1_for_publication.mp412.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280;
- 1bT. Yi, E. Zhao, Y. He, T. Liang, H. Wang, eScience 2024, 4, 100182;
- 1cL.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003–1019.
- 2
- 2aD. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206;
- 2bW. Jia, J. Zhang, L. Zheng, H. Zhou, W. Zou, L. Wang, eScience 2024, 4, 100266.
- 3M. He, L. G. Hector, F. Dai, F. Xu, S. Kolluri, N. Hardin, M. Cai, Nat. Energy 2024, 9, 1199–1205.
- 4
- 4aY. Kato, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030;
- 4bY. Li, S. Song, H. Kim, K. Nomoto, H. Kim, X. Sun, S. Hori, K. Suzuki, N. Matsui, M. Hirayama, T. Mizoguchi, T. Saito, T. Kamiyama, R. Kanno, Science 2023, 381, 50–53.
- 5
- 5aR. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 2007, 46, 7778–7781;
- 5bK. Jun, Y. Sun, Y. Xiao, Y. Zeng, R. Kim, H. Kim, L. J. Miara, D. Im, Y. Wang, G. Ceder, Nat. Mater. 2022, 21, 924–931.
- 6
- 6aB. Jagger, M. Pasta, Joule 2023, 7, 2228–2244;
- 6bW. Zhao, Y. Zhang, N. Sun, Q. Liu, H. An, Y. Song, B. Deng, J. Wang, G. Yin, F. Kong, S. Lou, J. Wang, ACS Energy Lett. 2023, 8, 5050–5060.
- 7
- 7aX. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan, F. Chen, T. C. Mendes, P. C. Howlett, C. Fu, Y. Wang, X. Tan, D. J. Searles, P. Král, C. J. Hawker, A. K. Whittaker, M. Forsyth, Nat. Mater. 2022, 21, 1057–1065;
- 7bL. Wang, S. Xu, Z. Wang, E. Yang, W. Jiang, S. Zhang, X. Jian, F. Hu, eScience 2023, 3, 100090.
- 8J.-Y. Liang, X.-X. Zeng, X.-D. Zhang, T.-T. Zuo, M. Yan, Y.-X. Yin, J.-L. Shi, X.-W. Wu, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 9165–9169.
- 9
- 9aS. Li, S.-Q. Zhang, L. Shen, Q. Liu, J.-B. Ma, W. Lv, Y.-B. He, Q.-H. Yang, Adv. Sci. 2020, 7, 1903088;
- 9bJ. Lopez, D. G. Mackanic, Y. Cui, Z. Bao, Nat. Rev. Mater. 2019, 4, 312–330.
- 10
- 10aY. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu, J. Kong, Y. Shen, H. Xu, Y. Huang, Adv. Energy Mater. 2023, 13, 2203547;
- 10bZ. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 2023, 10, 2201718.
- 11D. J. Bannister, G. R. Davies, I. M. Ward, J. E. McIntyre, Polymer 1984, 25, 1291–1296.
- 12
- 12aQ. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y.-S. Hu, H. Li, X. Huang, L. Chen, M. Armand, Z. Zhou, Angew. Chem. Int. Ed. 2016, 55, 2521–2525;
- 12bR. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 2013, 12, 452–457.
- 13
- 13aS. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu, L. Zhang, Y. Shao-Horn, X. Lin, M. Chen, Nat. Mater. 2023, 22, 1515–1522;
- 13bQ. Zhao, S. Stalin, C.-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229–252.
- 14
- 14aC. Zhang, E. Staunton, Y. G. Andreev, P. G. Bruce, J. Am. Chem. Soc. 2005, 127, 18305–18308;
- 14bZ. Gadjourova, Y. G. Andreev, D. P. Tunstall, P. G. Bruce, Nature 2001, 412, 520–523.
- 15
- 15aC. Zhang, Y. G. Andreev, P. G. Bruce, Angew. Chem. Int. Ed. 2007, 46, 2848–2850;
- 15bC. Zhang, S. Gamble, D. Ainsworth, A. M. Z. Slawin, Y. G. Andreev, P. G. Bruce, Nat. Mater. 2009, 8, 580–584.
- 16A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev, P. G. Bruce, Nature 2005, 433, 50–53.
- 17Z. Stoeva, I. Martin-Litas, E. Staunton, Y. G. Andreev, P. G. Bruce, J. Am. Chem. Soc. 2003, 125, 4619–4626.
- 18M. Schmeisser, P. Illner, R. Puchta, A. Zahl, R. van Eldik, Chem. Eur. J. 2012, 18, 10969–10982.
- 19D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589–589.
- 20Y. G. Andreev, V. Seneviratne, M. Khan, W. A. Henderson, R. E. Frech, P. G. Bruce, Chem. Mater. 2005, 17, 767–772.
- 21M. Marzantowicz, J. R. Dygas, F. Krok, J. L. Nowiński, A. Tomaszewska, Z. Florjańczyk, E. Zygadło-Monikowska, J. Power Sources 2006, 159, 420–430.
- 22S. Lascaud, M. Perrier, A. Vallée, S. Besner, J. Prud′homme, M. Armand, Macromolecules 1994, 27, 7469–7477.
- 23K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 24D. M. Seo, O. Borodin, S.-D. Han, Q. Ly, P. D. Boyle, W. A. Henderson, J. Electrochem. Soc. 2012, 159, A553–A565.
- 25M. Perez, Scripta Mater. 2005, 52, 709–712.
- 26
- 26aD. G. Mackanic, W. Michaels, M. Lee, D. Feng, J. Lopez, J. Qin, Y. Cui, Z. Bao, Adv. Energy Mater. 2018, 8, 1800703;
- 26bH.-Y. Zhou, Y. Ou, S.-S. Yan, J. Xie, P. Zhou, L. Wan, Z.-A. Xu, F.-X. Liu, W.-L. Zhang, Y.-C. Xia, K. Liu, Angew. Chem. Int. Ed. 2023, 62, e202306948.
- 27
- 27aN. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N. S. Grundish, H. Jin, Y.-Y. Hu, J. B. Goodenough, J. Am. Chem. Soc. 2020, 142, 2497–2505;
- 27bX. Fu, Y. Liu, W. Wang, L. Han, J. Yang, M. Ge, Y. Yao, H. Liu, Macromolecules 2020, 53, 10078–10085.
- 28J. Zheng, Y.-Y. Hu, ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.
- 29J. Self, K. D. Fong, K. A. Persson, ACS Energy Lett. 2019, 4, 2843–2849.
- 30K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi, M. Watanabe, J. Phys. Chem. B 2018, 122, 10736–10745.
- 31M. M. Elmahdy, K. Chrissopoulou, A. Afratis, G. Floudas, S. H. Anastasiadis, Macromolecules 2006, 39, 5170–5173.
- 32F. Barroso-Bujans, S. Cerveny, A. Alegría, J. Colmenero, Macromolecules 2013, 46, 7932–7939.
- 33H. Gudla, C. Zhang, D. Brandell, J. Phys. Chem. B 2020, 124, 8124–8131.
- 34G. Greczynski, L. Hultman, Prog. Mater. Sci. 2020, 107, 100591.
- 35O. Breuer, Y. Gofer, Y. Elias, M. Fayena-Greenstein, D. Aurbach, J. Electrochem. Soc. 2024, 171, 030510.
- 36L. D. Ellis, I. G. Hill, K. L. Gering, J. R. Dahn, J. Electrochem. Soc. 2017, 164, A2426–A2433.
- 37W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 38Z. Zhang, L. F. Nazar, Nat. Rev. Mater. 2022, 7, 389–405.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.