Quantifying Interface-Performance Relationships in Electrochemical CO2 Reduction through Mixed-Dimensional Assembly of Nanocrystal-on-Nanowire Superstructures
Hushui Chen
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorTaishi Xiao
School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorYan Xia
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorHengyao Song
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorXiangyun Xi
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorXianwu Huang
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorProf. Dong Yang
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Tongtao Li
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Zhengzong Sun
School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Angang Dong
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
Search for more papers by this authorHushui Chen
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorTaishi Xiao
School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorYan Xia
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorHengyao Song
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorXiangyun Xi
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorXianwu Huang
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorProf. Dong Yang
State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Tongtao Li
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Zhengzong Sun
School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Angang Dong
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438 China
Search for more papers by this authorAbstract
Fine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure–property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect. Importantly, varying the ratio of the two components during assembly allows for accurate control over both the quantity and contact perimeter of biphasic interfaces. As a proof-of-concept demonstration, a series of Au-on-Ag superstructures with varying numbers of Au/Ag interfaces are constructed and employed as electrocatalysts for electrochemical CO2-to-CO conversion. Experimental results reveal a logarithmic linear relationship between catalytic activity and the number of Au/Ag interfaces per unit mass of Au-on-Ag superstructures. This work presents a straightforward approach for precise interface engineering, paving the way for systematic exploration of interface-dependent catalytic behaviors in heterogeneous catalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202410039-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science 2013, 341, 771–773;
- 1bJ. Shi, Chem. Rev. 2013, 113, 2139–2181;
- 1cJ. Y. Park, L. R. Baker, G. A. Somorjai, Chem. Rev. 2015, 115, 2781–2817;
- 1dI. Ro, J. Resasco, P. Christopher, ACS Catal. 2018, 8, 7368–7387;
- 1eC. L. Bentley, M. Kang, P. R. Unwin, J. Am. Chem. Soc. 2019, 141, 2179–2193;
- 1fT. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970;
- 1gK. Liu, R. Qin, N. Zheng, J. Am. Chem. Soc. 2021, 143, 4483–4499.
- 2
- 2aD. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110, 389–458;
- 2bB. Zhang, Y. Qin, ACS Catal. 2018, 8, 10064–10081.
- 3
- 3aQ. Kong, D. Kim, C. Liu, Y. Yu, Y. Su, Y. Li, P. Yang, Nano Lett. 2016, 16, 5675–5680;
- 3bJ. Fu, W. Zhu, Y. Chen, Z. Yin, Y. Li, J. Liu, H. Zhang, J.-J. Zhu, S. Sun, Angew. Chem. Int. Ed. 2019, 58, 14100–14103;
- 3cI. Coropceanu, E. M. Janke, J. Portner, D. Haubold, T. D. Nguyen, A. Das, C. P. N. Tanner, J. K. Utterback, S. W. Teitelbaum, M. H. Hudson, N. A. Sarma, A. M. Hinkle, C. J. Tassone, A. Eychmüller, D. T. Limmer, M. Olvera de la Cruz, N. S. Ginsberg, D. V. Talapin, Science 2022, 375, 1422–1426;
- 3dM. Ha, J.-H. Kim, M. You, Q. Li, C. Fan, J.-M. Nam, Chem. Rev. 2019, 119, 12208–12278.
- 4
- 4aN. Vogel, M. Retsch, C.-A. Fustin, A. del Campo, U. Jonas, Chem. Rev. 2015, 115, 6265–6311;
- 4bD. Nepal, S. Kang, K. M. Adstedt, K. Kanhaiya, M. R. Bockstaller, L. C. Brinson, M. J. Buehler, P. V. Coveney, K. Dayal, J. A. El-Awady, L. C. Henderson, D. L. Kaplan, S. Keten, N. A. Kotov, G. C. Schatz, S. Vignolini, F. Vollrath, Y. Wang, B. I. Yakobson, V. V. Tsukruk, H. Heinz, Nat. Mater. 2023, 22, 18–35.
- 5
- 5aC. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, B. Gao, Adv. Mater. 2011, 23, 3052–3056;
- 5bS. Narayanan, G. Cheng, Z. Zeng, Y. Zhu, T. Zhu, Nano Lett. 2015, 15, 4037–4044;
- 5cB. Li, S. Ye, I. E. Stewart, S. Alvarez, B. J. Wiley, Nano Lett. 2015, 15, 6722–6726;
- 5dH. Lee, M. Kim, I. Kim, H. Lee, Adv. Mater. 2016, 28, 4541–4548;
- 5eY. Ge, X. Duan, M. Zhang, L. Mei, J. Hu, W. Hu, X. Duan, J. Am. Chem. Soc. 2018, 140, 193–199;
- 5fY. Zhu, Y. Deng, P. Yi, L. Peng, X. Lai, Z. Lin, Adv. Mater. Technol. 2019, 4, 1900413.
- 6
- 6aT. Zheng, K. Jiang, H. Wang, Adv. Mater. 2018, 30, 1802066;
- 6bE. L. Clark, S. Ringe, M. Tang, A. Walton, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, ACS Catal. 2019, 9, 4006–4014;
- 6cH. Hu, M. Liu, Y. Kong, N. Mysuru, C. Sun, M. d J Gálvez-Vázquez, U. Müller, R. Erni, V. Grozovski, Y. Hou, P. Broekmann, ACS Catal. 2020, 10, 8503–8514;
- 6dW. Ge, Y. Chen, Y. Fan, Y. Zhu, H. Liu, L. Song, Z. Liu, C. Lian, H. Jiang, C. Li, J. Am. Chem. Soc. 2022, 144, 6613–6622.
- 7
- 7aA. Ozden, Y. Liu, C.-T. Dinh, J. Li, P. Ou, F. P. García de Arquer, E. H. Sargent, D. Sinton, ACS Appl. Energ. Mater. 2021, 4, 7504–7512;
- 7bN. Han, M. Sun, Y. Zhou, J. Xu, C. Cheng, R. Zhou, L. Zhang, J. Luo, B. Huang, Y. Li, Adv. Mater. 2021, 33, 2005821.
- 8
- 8aK. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard III, Z. Wang, J. Am. Chem. Soc. 2017, 139, 15608–15611;
- 8bG. Zhao, F. Yang, Z. Chen, Q. Liu, Y. Ji, Y. Zhang, Z. Niu, J. Mao, X. Bao, P. Hu, Y. Li, Nat. Commun. 2017, 8, 14039;
- 8cD. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, J. Am. Chem. Soc. 2017, 139, 5652–5655.
- 9
- 9aT. Bian, A. Gardin, J. Gemen, L. Houben, C. Perego, B. Lee, N. Elad, Z. Chu, G. M. Pavan, R. Klajn, Nat. Chem. 2021, 13, 940–949;
- 9bQ. Yun, Y. Ge, B. Huang, Q. Wa, H. Zhang, Acc. Chem. Res. 2023, 56, 1780–1790.
- 10W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833–16836.
- 11Q. Chen, W. Xin, Q. Ji, T. Hu, J. Zhang, C. Shang, Z. Liu, X. Liu, H. Chen, ACS Nano 2020, 14, 15286–15292.
- 12J. Hwang, Y. Shim, S.-M. Yoon, S. H. Lee, S.-H. Park, RSC Adv. 2016, 6, 30972–30977.
- 13
- 13aB.-H. Wu, H.-Y. Yang, H.-Q. Huang, G.-X. Chen, N.-F. Zheng, Chin. Chem. Lett. 2013, 24, 457–462;
- 13bS.-W. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, T. Hyeon, Y. W. Kim, Nano Lett. 2003, 3, 1289–1291;
- 13cJ. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891–895;
- 13dJ. Lynch, J. Zhuang, T. Wang, D. LaMontagne, H. Wu, Y. C. Cao, J. Am. Chem. Soc. 2011, 133, 12664–12674.
- 14Z. Zhang, Y. Wu, Z. Wang, X. Zhang, Y. Zhao, L. Sun, Mater. Sci. Eng. C 2017, 78, 706–714.
- 15
- 15aP. Roscigno, F. Asaro, G. Pellizer, O. Ortona, L. Paduano, Langmuir 2003, 19, 9638–9644;
- 15bY. Borodko, S. E. Habas, M. Koebel, P. Yang, H. Frei, G. A. Somorjai, J. Phys. Chem. B 2006, 110, 23052–23059;
- 15cS. Sarkar, R. Das, J. Hazard. Mater. 2017, 339, 54–62.
- 16Z. Hens, J. C. Martins, Chem. Mater. 2013, 25, 1211–1221.
- 17S. Mourdikoudis, L. M. Liz-Marzán, Chem. Mater. 2013, 25, 1465–1476.
- 18
- 18aC. C. Tyson, A. Bzowski, P. Kristof, M. Kuhn, R. Sammynaiken, T. K. Sham, Phys. Rev. B 1992, 45, 8924–8928;
- 18bS. W. Han, Y. Kim, K. Kim, J. Colloid Interface Sci. 1998, 208, 272–278;
- 18cQ. Fan, H. Fan, K. Li, C. Hou, Q. Zhang, Y. Li, H. Wang, Small 2023, 19, 2208234;
- 18dX. Kong, J. Zhao, Z. Xu, Z. Wang, Y. Wu, Y. Shi, H. Li, C. Ma, J. Zeng, Z. Geng, J. Am. Chem. Soc. 2023, 145, 14903–14911.
- 19
- 19aJ. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B 2005, 109, 12544–12548;
- 19bR. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Nano Lett. 2012, 12, 4661–4667.
- 20
- 20aC.-L. Zhang, K.-P. Lv, H.-T. Huang, H.-P. Cong, S.-H. Yu, Nanoscale 2012, 4, 5348–5355;
- 20bJ. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z.-X. Xie, D. Qin, ACS Nano 2016, 10, 2607–2616.
- 21
- 21aS. Gbadamasi, M. Mohiuddin, V. Krishnamurthi, R. Verma, M. W. Khan, S. Pathak, K. Kalantar-Zadeh, N. Mahmood, Chem. Soc. Rev. 2021, 50, 4684–4729;
- 21bL. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, G. Ji, Adv. Mater. 2022, 34, 2106195;
- 21cF. Zhang, J. Luo, J. Chen, H. Luo, M. Jiang, C. Yang, H. Zhang, J. Chen, A. Dong, J. Yang, Angew. Chem. Int. Ed. 2023, 62, e202310383.
- 22S. Kitano, T. G. Noguchi, M. Nishihara, K. Kamitani, T. Sugiyama, S. Yoshioka, T. Miwa, K. Yoshizawa, A. Staykov, M. Yamauchi, Adv. Mater. 2022, 34, 2110552.
- 23
- 23aR. Shi, J. Guo, X. Zhang, G. I. N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Nat. Commun. 2020, 11, 3028;
- 23bA. Goyal, G. Marcandalli, V. A. Mints, M. T. M. Koper, J. Am. Chem. Soc. 2020, 142, 4154–4161.
- 24
- 24aS. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett. 2018, 3, 193–198;
- 24bH. Yun, W. Choi, D. Shin, H.-S. Oh, Y. J. Hwang, ACS Catal. 2023, 13, 9302–9312;
- 24cJ. Gu, C.-S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091–1094.
- 25
- 25aC. Shi, H. A. Hansen, A. C. Lausche, J. K. Nørskov, Phys. Chem. Chem. Phys. 2014, 16, 4720–4727;
- 25bH.-Y. Jeong, M. Balamurugan, V. S. K. Choutipalli, E.-s. Jeong, V. Subramanian, U. Sim, K. T. Nam, J. Mater. Chem. A 2019, 7, 10651–10661.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.