Perylene with Split-Azulene Embedding
Laiyun Zhou
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorFei Qiu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorYeda Ding
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorJianwei Liang
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
These authors contributed equally to this work
Search for more papers by this authorBingdi Zhou
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Prof. Zheng Zhou
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Prof. Lei Zhang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Chunyan Chi
Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, 117543 Singapore
Search for more papers by this authorCorresponding Author
Prof. Qing Wang
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorLaiyun Zhou
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorFei Qiu
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work
Search for more papers by this authorYeda Ding
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
These authors contributed equally to this work
Search for more papers by this authorJianwei Liang
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
These authors contributed equally to this work
Search for more papers by this authorBingdi Zhou
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Prof. Zheng Zhou
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Prof. Lei Zhang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Chunyan Chi
Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, 117543 Singapore
Search for more papers by this authorCorresponding Author
Prof. Qing Wang
School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021 China
Search for more papers by this authorAbstract
Splitting the five and seven-membered rings of azulene and embedding them separately into a conjugated backbone provides azulene-like polycyclic aromatic hydrocarbons (PAHs), which are of great interest in quantum and material chemistry. However, the synthetic accessibility poses a significant challenge. In this study, we present the synthesis of a novel azulene-like PAH, Pery-57, which can be viewed as the integration of a perylene framework into the split azulene. The compact structure of Pery-57 displays several intriguing characteristics, including NIR II absorption at 1200 nm, a substantial dipole moment of 3.5 D, and head-to-tail alternating columnar packing. Furthermore, Pery-57 exhibits remarkable redox properties. The cationic radical Pery-57⋅+ readily captures a hydrogen atom. Variable-temperature NMR (VT NMR ) and variable-temperature EPR (VT-EPR) studies reveal that the dianion Pery-572− possesses an open-shell singlet ground state and demonstrates significant global anti-aromaticity. The dication Pery-572+ is also predicted to exhibit diradical character. Despite bearing three bulky substituents, Pery-57 displays p-type transport characteristics with a mobility of 0.03 cm2 V−1 s−1, attributed to its unique azulene-like structure. Overall, this work directs interest in azulene-like PAHs, a unique member of nonalternant PAHs showcasing exceptional properties and applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409750-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Konishi, K. Horii, M. Yasuda, J. Phys. Org. Chem. 2023, 36, e4495;
- 1bS. Moles Quintero, M. M. Haley, M. Kertesz, J. Casado, Angew. Chem. Int. Ed. 2022, 61, e202209138;
- 1cY. Duan, M. Chen, H. Hayashi, H. Yamada, X. Liu, L. Zhang, Chem. Sci. 2023, 14, 10420;
- 1dG. González Miera, S. Matsubara, H. Kono, K. Murakami, K. Itami, Chem. Sci. 2022, 13, 1848;
- 1eJ. Wang, F. G. Gámez, J. Marín-Beloqui, A. Diaz-Andres, X. Miao, D. Casanova, J. Casado, J. Liu, Angew. Chem. Int. Ed. 2023, 62, e202217124;
- 1fL. Qin, J. Xie, B. Wu, H. Hong, S. Yang, Z. Ma, D. Zhang, J. Am. Chem. Soc. 2024, 146, 12206;
- 1gD. Yang, K. M. Cheung, Q. Gong, L. Zhang, L. Qiao, X. Chen, Q. Miao, Angew. Chem. Int. Ed. 2024, e202402756;
- 1hJ. Borstelmann, L. Schneider, F. Rominger, F. Deschler, M. Kivala, Angew. Chem. Int. Ed. 2024, e202405570.
- 2
- 2aJ. Z. Liu, S. Mishra, C. A. Pignedoli, D. Passerone, J. I. Urgel, A. Fabrizio, T. G. Lohr, J. Ma, H. Komber, M. Baumgarten, C. Corminboeuf, R. Berger, P. Ruffieux, K. Müllen, R. Fasel, X. L. Feng, J. Am. Chem. Soc. 2019, 141, 12011;
- 2bB. Pigulski, K. Shoyama, F. Wurthner, Angew. Chem. Int. Ed. 2020, 59, 15908;
- 2cH. S. Xin, J. Li, R. Q. Lu, X. K. Gao, T. M. Swager, J. Am. Chem. Soc. 2020, 142, 13598;
- 2dX. S. Zhang, Y. Y. Huang, J. Zhang, W. Meng, Q. Peng, R. R. Kong, Z. W. Xiao, J. Liu, M. F. Huang, Y. P. Yi, L. L. Chen, Q. R. Fan, G. B. Lin, Z. T. Liu, G. X. Zhang, L. Jiang, D. Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 3529;
- 2eC. Y. Zhang, J. Cheng, Q. Q. Wu, S. J. Hou, S. Feng, B. Jiang, C. J. Lambert, X. K. Gao, J. Q. Li, J. Am. Chem. Soc. 2023, 145, 1617;
- 2fC. Duan, J. W. Zhang, J. J. Xiang, X. D. Yang, X. K. Gao, Angew. Chem. Int. Ed. 2022, 61, e202201494;
- 2gA. Konishi, K. Horii, D. Shiomi, K. Sato, T. Takui, M. Yasuda, J. Am. Chem. Soc. 2019, 141, 10165;
- 2hN. Ogawa, Y. Yamaoka, H. Takikawa, K. I. Yamada, K. Takasu, J. Am. Chem. Soc. 2020, 142, 13322.
- 3
- 3aP. C. Liu, X. Y. Chen, J. W. Cao, L. Ruppenthal, J. M. Gottfried, K. Müllen, X. Y. Wang, J. Am. Chem. Soc. 2021, 143, 5314;
- 3bX. Y. Yang, X. L. Shi, N. Aratani, T. P. Gonçalves, K. W. Huang, H. Yamada, C. Y. Chi, Q. Miao, Chem. Sci. 2016, 7, 6176;
- 3cX. Y. Fu, H. Han, D. Zhang, H. Yu, Q. L. He, D. H. Zhao, Chem. Sci. 2020, 11, 5565.
- 4
- 4aT. Nakajima, Pure Appl. Chem. 1971, 28, 219;
- 4bJ. Schütt, M. C. Böhm, J. Phys. Chem. 1992, 96, 604;
- 4cB. A. Hess, L. J. Schaad, J. Org. Chem. 1971, 36, 3418;
- 4dM. Randic, J. Am. Chem. Soc. 1977, 99, 444;
- 4eA. Toyota, Bull. Chem. Soc. Jpn. 1975, 48, 1152.
- 5
- 5aA. D. Campbell, S. N. Slater, J. Am. Chem. Soc. 1952, 4353;
- 5bD. J. Bertelli, J. Org. Chem. 1964, 29, 3032;
- 5cD. J. Bertelli, J. Org. Chem. 1965, 30, 891;
- 5dF. G. Bordwell, M. Winn, J. Org. Chem. 1967, 32, 42.
- 6Y. Zou, W. Zeng, T. Y. Gopalakrishna, Y. Han, Q. Jiang, J. Wu, J. Am. Chem. Soc. 2019, 141, 7266.
- 7
- 7aS. Yamanaka, M. Okumura, M. Nakano, K. Yamaguchi, J. Mol. Struct. 1994, 310, 205;
10.1016/S0022-2860(10)80071-7 Google Scholar
- 7bD. Geuenich, K. Hess, F. Kchler, R. Herges, Chem. Rev. 2005, 105, 3758;
- 7cZ. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842;
- 7dT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580;
- 7eE. K. U. Gross, W. Kohn, Adv. Quantum Chem. 1990, 21, 255;
- 7fE. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997;
- 7gGaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
- 8Deposition numbers 2300867, 2350421, 2350509, 2350510, 2350511, 2366935 contain the supplementary crystallographic data for Pery-57, Pery-57-H+ (generated by HBF4), Pery-57-H+ (generated by AgSbF6), Pery-57⋅+-Pery-57-H+ (generated by AgSbF6), Pery-57-H+ (generated by NO⋅SbF6), and Pery-57⋅+ (generated by AgSbF6) respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 9A. Diaz-Andres, J. Marin-Beloqui, J. Wang, J. Liu, J. Casado, D. Casanova, Chem. Sci. 2023, 14, 6420.
- 10Q. Xiang, J. Guo, J. Xu, S. Ding, Z. Li, G. Li, H. Phan, Y. Gu, Y. Dang, Z. Xu, Z. Gong, W. Hu, Z. Zeng, J. Wu, Z. Sun, J. Am. Chem. Soc. 2020, 142, 11022.
- 11C. Liu, M. E. Sandoval-Salinas, Y. Hong, T. Y. Gopalakrishna, H. Phan, N. Aratani, T. S. Herng, J. Ding, H. Yamada, D. Kim, Chem. 2018, 4, 1586.
- 12M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
- 13T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 14T. Lu, F. Chen, J. Mol. Graphics Modell. 2012, 38, 314.
- 15
- 15aA. D. Becke, J. Chem. Phys. 1993, 98, 5648;
- 15bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785;
- 15cT. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51;
- 15dR. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724;
- 15eW. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257;
- 15fP. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213.
- 16
- 16aS. Yamanaka, M. Okumura, M. Nakano, K. Yamaguchi, J. Mol. Struct. 1994, 310, 205;
10.1016/S0022-2860(10)80071-7 Google Scholar
- 16bK. Kamada, K. Ohta, A. Shimizu, T. Kubo, R. Kishi, H. Takahashi, E. Botek, B. Champagne, M. Nakano, J. Phys. Chem. Lett. 2010, 1, 937.
- 17Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842.
- 18D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758.
- 19W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.