Enhanced Charge-Carrier Dynamics and Efficient Photoelectrochemical Nitrate-to-Ammonia Conversion on Antimony Sulfide-Based Photocathodes
Shijie Ren
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Rui-Ting Gao
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorJidong Yu
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorYang Yang
NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida, 32826 United States
Search for more papers by this authorXianhu Liu
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97–1, Zhengzhou, 450002 China
Search for more papers by this authorCorresponding Author
Limin Wu
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Lei Wang
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorShijie Ren
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Rui-Ting Gao
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorJidong Yu
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorYang Yang
NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida, 32826 United States
Search for more papers by this authorXianhu Liu
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97–1, Zhengzhou, 450002 China
Search for more papers by this authorCorresponding Author
Limin Wu
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Lei Wang
College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorAbstract
The photoelectrochemical reduction of nitrate to ammonia (PEC NO3RR) has emerged as a promising pathway for facilitating the natural nitrogen cycle. The PEC NO3RR can lower the reduction potential needed for ammonia synthesis through photogenerated voltage, showcasing the significant potential for merging abundant solar energy with sustainable nitrogen fixation. However, it is influenced by the selective photocathodes with poor carrier kinetics, low catalytic selectivity, and ammonia yields. There are few reports on suitable photoelectrodes owning efficient charge transport on PEC NO3RR at low overpotentials. Herein, we rationally constructed the CuSn alloy co-catalysts on the antimony sulfides with a highly selective PEC ammonia and an ultra-low onset potential (0.62 VRHE). CuSn/TiO2/Sb2S3 photoelectrodes achieved an ammonia faradic efficiency of 97.82 % at a low applied potential of 0.4 VRHE, and an ammonia yield of 16.96 μmol h−1 cm−2 at 0 VRHE under one sun illumination. Dynamics experiments and theoretical calculations have demonstrated that CuSn/TiO2/Sb2S3 has an enhanced charge separation and transfer efficiency, facilitating photogenerated electrons to participate in PEC NO3RR quickly. Meanwhile, moderate NO2* adsorption on this photocathode optimizes the catalytic activity and increases the NH4+ yield. This work opens an avenue for designing sulfide-based photocathodes for the efficient route of solar-to-ammonia conversion.
Conflict of Interests
The authors declare that they have no competing interests in this work.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409693-sup-0001-misc_information.pdf7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Zhang, Y. Lyu, C. Chen, J. Zheng, S. P. Jiang, S. Wang, PNAS 2024, 121, e2311326121.
- 2Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Nature 2019, 568, 536–540.
- 3D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. R. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. F. Vallana, A. N. Simonov, Joule 2020, 4, 1186–1205.
- 4J. Guo, P. Chen, Chem 2017, 3, 709–712.
- 5G. Soloveichik, Nat. Catal. 2019, 2, 377–380.
- 6C. Tang, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 19572–19590.
- 7A. J. Martín, T. Shinagawa, J. Pérez-Ramírez, Chem 2019, 5, 263–283.
- 8X. Zhang, Y. Lyu, H. Zhou, J. Zhen, A. Huang, J. Ding, C. Xie, R. D. Marco, N. Tsud, V. Kalinovych, S. Jiang, L. Dai, S. Wang, Adv. Mater. 2023, 35, 2211894.
- 9C. Smith, A. K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 2020, 13, 331–344.
- 10H. Bai, M. Zhai, L. Liu, D. Shao, F. Wang, W. Fan, Sep. Purif. Technol. 2024, 340, 126745.
- 11J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636–639.
- 12J. Lim, C. A. Fernández, S. W. Lee, M. C. Hatzell, ACS Energy Lett. 2021, 6, 3676–3685.
- 13H. Xu, J. Chen, Z. Zhang, C.-T. Hung, J. Yang, W. Li, Adv. Mater. 2023, 35, 2207522.
- 14W. Lin, E. Zhou, J.-F. Xie, J. Lin, Y. Wang, Adv. Funct. Mater. 2022, 32, 2209464.
- 15Y. Qi, B. Zhang, G. Zhang, Z. Zheng, T. Xie, S. Chen, G. Ma, C. Li, K. Domen, F. Zhang, Joule 2024, 8, 193–203.
- 16Y. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen, D. Li, W. Liu, Y. Chen, T. Xie, J. Cui, C. Li, K. Domen, F. Zhang, Nat. Commun. 2022, 13, 484.
- 17B. Dong, J. Cui, Y. Gao, Y. Qi, F. Zhang, C. Li, Adv. Mater. 2019, 31, 1808185.
- 18R. Zhang, Y. Guo, S. Zhang, D. Chen, Y. Zhao, Z. Huang, L. Ma, P. Li, Q. Yang, G. Liang, C. Zhi, Adv. Energy Mater. 2022, 12, 2103872.
- 19C. L. Ford, Y. J. Park, E. M. Matson, Z. Gordon, A. R. Fout, Science 2016, 354, 741–743.
- 20W. Zheng, L. Zhu, Z. Yan, Z. Lin, Z. Lei, Y. Zhang, H. Xu, Z. Dang, C. Wei, C. Feng, Environ. Sci. Technol. 2021, 55, 13231–13243.
- 21J. Gao, N. Shi, X. Guo, Y. Li, X. Bi, Y. Qi, J. Guan, B. Jiang, Environ. Sci. Technol. 2021, 55, 10684–10394.
- 22X. Li, W. Fan, Y. Bai, Y. Liu, F. Wang, H. Bai, W. Shi, Chem. Eng. J. 2022, 433, 133225.
- 23J. Ding, Y. Lyu, H. Zhou, B. Johannessen, X. Zhang, J. Zheng, S. Jiang, S. Wang, Appl. Catal. B 2024, 345, 123735.
- 24S. Zhou, K. Sun, C. Toe, J. Yin, J. Huang, Y. Zeng, D. Zhang, W. Chen, O. F. Mohammed, X. Hao, R. Amal, Adv. Mater. 2022, 34, 2201670.
- 25H. E. Kim, J. Kim, E. C. Ra, H. Zhang, Y. J. Jang, J. S. Lee, Angew. Chem. Int. Ed. 2022, 61, e202204117.
- 26H. Bai, F. Wang, Q. Ding, W. Xie, H. Li, G. Zheng, W. Fan, Inorg. Chem. 2023, 62, 2394–2403.
- 27K. Chen, R. Wang, Q. Mei, F. Ding, H. Liu, G. Yang, B. Bai, Q. Wang, Appl. Catal. B 2024, 344, 123670.
- 28F. Wang, Q. Ding, J. Ding, Y. Bai, H. Bai, W. Fan, Chem. Eng. J. 2022, 450, 138260.
- 29M. Xu, F. Xu, K. Zhu, X. Xu, P. Deng, W. Wu, W. Ye, Z. Sun, P. Gao, Compos. Commun. 2022, 29, 101037.
- 30C. Chiang, Y. Kao, P. Wu, T. Liu, J. Lin, P. Chen, J. Lin, S. Yang, H. Chen, S. Patil, D. Wang, C. Chen, J. Mater. Chem. A 2023, 11, 11179–11186.
- 31S. Ren, R.-T. Gao, N. T. Nguyen, L. Wang, Angew. Chem. Int. Ed. 2024, 63, e202317414.
- 32W. Lei, Y. Yu, H. Zhang, Q. Jia, S. Zhang, Mater. Today 2022, 52, 133–160.
- 33S. Chen, M. Li, Y. Zhu, X. Cai, F. Xiao, T. Ma, J. Yang, G. Shen, A. Ke, Y. Lu, W. Liang, H. .-Y. Hsu, C. Chen, J. Tang, H. Song, Adv. Energy Mater. 2022, 12, 2202897.
- 34L. Wang, W. Lian, B. Liu, H. Lv, Y. Zhang, X. Wu, T. Wang, J. Gong, T. Chen, H. Xu, Adv. Mater. 2022, 34, 2200723.
- 35R. Kondrotas, C. Chen, J. Tang, Joule 2018, 2, 857–878.
- 36M. Yang, Z. Fan, J. Du, R. Li, D. Liu, B. Zhang, K. Feng, C. Feng, Y. Li, ACS Catal. 2022, 12, 8175–8184.
- 37M. Yang, Z. Fan, J. Du, C. Feng, R. Li, B. Zhang, N. Pastukhova, M. Valant, M. Finsgar, A. Mavric, Y. Li, Small 2024, 2311644.
- 38W. Ren, X. Tan, J. Qu, S. Li, J. Li, X. Liu, S. P. Ringer, J. M. Cariney, K. Wang, S. C. Smith, C. Zhao, Nat. Commun. 2021, 12, 1449.
- 39J. Ni, X. Zhu, Y. Yuan, Z. Wang, Y. Li, L. Ma, A. Dai, M. Li, T. Wu, R. S. Yassar, J. Lu, L. Li, Nat. Commun. 2020, 11, 1212.
- 40Y. Shi, Y. Wang, J. Yu, Y. Chen, C. Fang, D. Jiang, Q. Zhang, L. Gu, X. Yu, X. Li, H. Liu, W. Zhou, Adv. Energy Mater. 2023, 13, 2203506.
- 41R. Chen, J. Zhao, Y. Li, Y. Cui, Y.-R. Lu, S.-F. Hung, S. Wang, W. Wang, G. Huo, Y. Zhao, W. Liu, J. Wang, H. Xiao, X. Li, Y. Huang, B. Liu, J. Am. Chem. Soc. 2023, 145, 20683–20691.
- 42Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354.
- 43W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, Nat. Commun. 2022, 13, 1129.
- 44J.-Y. Fang, Q.-Z. Zheng, Y. Y. Lou, K.-M. Zhao, S.-N. Hu, G. Li, O. Akdim, X.-Y. Huang, S.-G. Sun, Nat. Commun. 2022, 13, 7899.
- 45G. Liang, Z. Li, M. Ishaq, Z. Zhen, Z. Su, H. Ma, X. Zhang, P. Fan, S. Chen, Adv. Energy Mater. 2023, 2300215.
- 46S. Chen, T. Liu, M. Chen, M. Ishaq, R. Tang, Z. Zheng, Z. Su, X. Li, X. Qiao, P. Fan, G. Liang, Nano Energy 2022, 99,107417.
- 47J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou, H. Li, C. Chen, Y. Li, H. Zhou, S. Jiang, S. Wang, Chem 2019, 5, 617–633.
- 48S. Zhang, J. Wu, M. Zheng, X. Jin, Z. Shen, Z. Li, Y. Wang, Q. Wang, X. Wang, H. Wei, J. Zhang, P. Wang, S. Zhang, L. Yu, L. Dong, Q. Zhu, H. Zhang, J. Lu, Nat. Commun. 2023, 14, 3634.
- 49Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu, G. Yu, ACS Nano 2022, 16, 1072–1081.
- 50S. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414.
- 51X. Feng, J. Liu, L. Chen, Y. Kong, Z. Zhang, Z. Zhang, D. Wang, W. Liu, S. Li, L. Tong, J. Zhang, J. Am. Chem. Soc. 2023, 145, 10259–10267.
- 52K. Chen, Z. Ma, X. Li, J. Kang, D. Ma, K. Chu, Adv. Funct. Mater. 2023, 12, 2209890.
- 53X. Li, P. Shen, X. Li, D. Ma, K. Chu, ACS Nano 2023, 17, 1081–1090.
- 54J. Tan, B. Kang, K. Kim, D. Kang, H. Lee, S. Ma, G. Jang, H. Lee, J. Moon, Nat. Energy 2022, 7, 537–547.
- 55W. Yang, J. H. Kim, O. S. Hutter, L. J. Phillips, J. Tan, J. Park, H. Lee, J. D. Major, J. S. Lee, J. Moon, Nat. Commun. 2020, 11, 861.
- 56L. Pan, Y. Liu, L. Yao, D. Ren, K. Sivula, M. Grätzel, A. Hagfeldt, Nat. Commun. 2020, 11, 318.
- 57Q. Wang, B. Liu, S. Wang, P. Zhang, T. Wang, J. Gong, Proc. Natl. Acad. Sci. USA 2024, 121, e2316724121.
- 58Y. Li, K. Wang, D. Huang, L. Li, J. Tao, N. A. A. Ghany, F. Jiang, Appl. Catal. B 2021, 286, 119872.
- 59R.-T. Gao, L. Liu, Y. Li, Y. Yang, J. He, X. Liu, X. Zhang, L. Wang, L. Wu, Proc. Natl. Acad. Sci. USA 2023, 120, e2300493120.
- 60R.-T. Gao, N. T. Nguyen, T. Nakajima, J. He, X. Liu, X. Zhang, L. Wang, L. Wu, Sci. Adv. 2023, 9, eade4589.
- 61W. Yang, S. Lee, H.-C. Kwon, J. Tan, H. Lee, J. Park, Y. Oh, H. Choi, J. Moon, ACS Nano 2018, 12, 11088–11097.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.