Rationalizing Acidic Oxygen Evolution Reaction over IrO2: Essential Role of Hydronium Cation
This article relates to:
-
Innenrücktitelbild: Rationalizing Acidic Oxygen Evolution Reaction over IrO2: Essential Role of Hydronium Cation (Angew. Chem. 48/2024)
- Volume 136Issue 48Angewandte Chemie
- First Published online: October 24, 2024
Tianyou Mou
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Search for more papers by this authorDaniela A. Bushiri
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorProf. Daniel V. Esposito
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorCorresponding Author
Prof. Jingguang G. Chen
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorCorresponding Author
Dr. Ping Liu
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Search for more papers by this authorTianyou Mou
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Search for more papers by this authorDaniela A. Bushiri
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorProf. Daniel V. Esposito
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorCorresponding Author
Prof. Jingguang G. Chen
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Department of Chemical Engineering, Columbia University, 10027 New York, NY, USA
Search for more papers by this authorCorresponding Author
Dr. Ping Liu
Chemistry Division, Brookhaven National Laboratory, 11973 Upton, NY, USA
Search for more papers by this authorAbstract
The development of active, stable, and more affordable electrocatalysts for acidic oxygen evolution reaction (OER) is of great importance for the practical application of electrolyzers and the advancement of renewable energy conversion technologies. Currently, IrO2 is the only catalyst with high stability and activity, but a high cost. Further optimization of the catalyst is limited by the lack of understanding of catalytic behaviors at the acid-IrO2 interface. Here, in strong interaction with the experiment, we develop an explicit model based on grand-canonical density function theory (GC-DFT) calculations to describe acidic OER over IrO2. Compared to the explicit models reported previously, hydronium cations (H3O+) are introduced at the electrochemical interface in the current model. As a result, a variation in stable IrO2 surface configuration under the OER operating condition from previously proposed complete *O-coverage to a mixture coverage of *OH and *O is revealed, which is well supported by in situ Raman measurements. In addition, the accuracy of predicted overpotential is increased in comparison with the experimentally measured. More importantly, an alteration of the potential limiting step from previously identified *O→*OOH to *OH→*O is observed, which opens new opportunities to advance the IrO2-based catalysts for acidic OER.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409526-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Joule 2021, 5, 1704–1731.
- 2I. Roger, M. A. Shipman, M. D. Symes, Nat. Chem. Rev. 2017, 1, 1–13.
- 3S. Wang, L. Liu, H. Xin, C. Ling, Chem Catal. 2024, 4, 100869.
- 4J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196–2214.
- 5J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2021, 143, 5201–5211.
- 6B. M. Tackett, W. Sheng, S. Kattel, S. Yao, B. Yan, K. A. Kuttiyiel, Q. Wu, J. G. Chen, ACS Catal. 2018, 8, 2615–2621.
- 7I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
- 8S. Siahrostami, A. Vojvodic, J. Phys. Chem. C 2015, 119, 1032–1037.
- 9J. A. Gauthier, C. F. Dickens, L. D. Chen, A. D. Doyle, J. K. Nørskov, J. Phys. Chem. C 2017, 121, 11455–11463.
- 10Y. Ping, R. J. Nielsen, W. A. Goddard 3rd, J. Am. Chem. Soc. 2017, 139, 149–155.
- 11Y. Lee, C. Scheurer, K. Reuter, ChemSusChem 2022, 15, e202200015.
- 12D.-Y. Kuo, J. K. Kawasaki, J. N. Nelson, J. Kloppenburg, G. Hautier, K. M. Shen, D. G. Schlom, J. Suntivich, J. Am. Chem. Soc. 2017, 139, 3473–3479.
- 13H. N. Nong, L. J. Falling, A. Bergmann, M. Klingenhof, H. P. Tran, C. Spöri, R. Mom, J. Timoshenko, G. Zichittella, A. Knop-Gericke, S. Piccinin, J. Pérez-Ramírez, B. R. Cuenya, R. Schlögl, P. Strasser, D. Teschner, T. E. Jones, Nature 2020, 587, 408–413.
- 14H. Over, ACS Catal. 2021, 11, 8848–8871.
- 15A. S. Raman, A. Selloni, J. Phys. Chem. Lett. 2023, 14, 7787–7794.
- 16J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886–17892.
- 17A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci. 2010, 3, 1311–1315.
- 18N. Govindarajan, A. Xu, K. Chan, Science 2022, 375, 379–380.
- 19D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Nat. Chem. 2013, 5, 300–306.
- 20K. Klyukin, A. Zagalskaya, V. Alexandrov, J. Phys. Chem. C 2018, 122, 29350–29358.
- 21Y. Ping, W. A. Goddard 3rd, G. A. Galli, J. Am. Chem. Soc. 2015, 137, 5264–5267.
- 22A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley Global Education, 2012.
- 23J. C. Fornaciari, L.-C. Weng, S. M. Alia, C. Zhan, T. A. Pham, A. T. Bell, T. Ogitsu, N. Danilovic, A. Z. Weber, Electrochim. Acta 2022, 405, 139810.
- 24S. A. K. Navodye, G. T. K. K. Gunasooriya, J. Phys. Chem. C 2024, 128, 6041–6052.
- 25L. D. Chen, M. Bajdich, J. M. P. Martirez, C. M. Krauter, J. A. Gauthier, E. A. Carter, A. C. Luntz, K. Chan, J. K. Nørskov, Nat. Commun. 2018, 9, 3202.
- 26R. Li, Z. Jiang, Y. Guan, H. Yang, B. Liu, J. Raman Spectrosc. 2009, 40, 1200–1204.
- 27P. E. Fraley, K. Narahari Rao, L. H. Jones, J. Mol. Spectrosc. 1969, 29, 312–347.
- 28Y.-F. Huang, P. J. Kooyman, M. T. M. Koper, Nat. Commun. 2016, 7, 1–7.
- 29J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83–89.
- 30M. T. M. Koper, J. Electroanal. Chem. 2011, 660, 254–260.
- 31Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu, Adv. Energy Mater. 2020, 10, 2000478.
- 32H. S. Pillai, H. Xin, Ind. Eng. Chem. Res. 2019, 58, 10819–10828.
- 33P. Liu, J. K. Nørskov, Fuel Cells 2001, 1, 192–201.
- 34F. Che, A. J. Hensley, S. Ha, J.-S. McEwen, Catal. Sci. Technol. 2014, 4, 4020–4035.
- 35S. R. Kelly, C. Kirk, K. Chan, J. K. Nørskov, J. Phys. Chem. C 2020, 124, 14581–14591.
- 36G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter 1996, 54, 11169–11186.
- 37A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K. W. Jacobsen, J. Phys. Condens. Matter 2017, 29, 273002.
- 38B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B Condens. Matter 1999, 59, 7413–7421.
- 39J. D. Goodpaster, A. T. Bell, M. Head-Gordon, J. Phys. Chem. Lett. 2016, 7, 1471–1477.
- 40R. Sundararaman, W. A. Goddard 3rd, T. A. Arias, J. Chem. Phys. 2017, 146, 114104.
- 41K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 084106.
- 42K. Mathew, V. S. C. Kolluru, S. Mula, S. N. Steinmann, R. G. Hennig, J. Chem. Phys. 2019, 151, 234101.
- 43S. N. Steinmann, P. Sautet, J. Phys. Chem. C 2016, 120, 5619–5623.
- 44Q. Gao, H. S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin, H. Zhu, Nat. Commun. 2022, 13, 2338.
- 45J. M. Bernhard, PhD dissertation, University of North Texas, 1999.
- 46B. R. Chalamala, R. H. Reuss, K. A. Dean, E. Sosa, D. E. Golden, J. Appl. Phys. 2002, 91, 6141–6146.
- 47D. V. Esposito, V. Guilimondi, J. G. Vos, M. T. M. Koper, The Royal Society of Chemistry, 2022, chap. 7, pp. 167–209.
- 48Y.-C. Liu, C.-C. Wang, C.-E. Tsai, Electrochem. Commun. 2005, 7, 1345–1350.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.