Non-Equilibrium Dissipative Assembly with Switchable Biological Functions
Peng Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
These authors contributed equally.
Contribution: Conceptualization (equal), Formal analysis (lead), Funding acquisition (supporting), Project administration (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorYuanfeng Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
These authors contributed equally.
Contribution: Data curation (lead), Formal analysis (equal), Investigation (equal), Methodology (lead), Writing - original draft (equal)
Search for more papers by this authorYan Lu
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Software (supporting)
Search for more papers by this authorLinjie Xu
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Methodology (supporting)
Search for more papers by this authorBohan Li
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Software (supporting), Validation (supporting)
Search for more papers by this authorYingshuai Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Validation (supporting)
Search for more papers by this authorWei Zhou
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Methodology (supporting)
Search for more papers by this authorPu Yan
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Data curation (supporting)
Search for more papers by this authorYoufu Wang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
Search for more papers by this authorKecheng Cao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Data curation (supporting)
Search for more papers by this authorCorresponding Author
Yijun Zheng
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorPeng Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
These authors contributed equally.
Contribution: Conceptualization (equal), Formal analysis (lead), Funding acquisition (supporting), Project administration (equal), Visualization (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorYuanfeng Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
These authors contributed equally.
Contribution: Data curation (lead), Formal analysis (equal), Investigation (equal), Methodology (lead), Writing - original draft (equal)
Search for more papers by this authorYan Lu
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Software (supporting)
Search for more papers by this authorLinjie Xu
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Methodology (supporting)
Search for more papers by this authorBohan Li
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Software (supporting), Validation (supporting)
Search for more papers by this authorYingshuai Zhao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Validation (supporting)
Search for more papers by this authorWei Zhou
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Methodology (supporting)
Search for more papers by this authorPu Yan
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Data curation (supporting)
Search for more papers by this authorYoufu Wang
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
Search for more papers by this authorKecheng Cao
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Data curation (supporting)
Search for more papers by this authorCorresponding Author
Yijun Zheng
School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210 Shanghai, China
Contribution: Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Natural dissipative assembly (DSA) often exhibit energy-driven shifts in natural functions. However, creating man-made DSA that can mimic such biological activities transformation remains relatively rare. Herein, we introduce a cytomembrane-like dissipative assembly system based on chiral supramolecules. This system employs benzoyl cysteine in an out of equilibrium manner, enabling the shifts in biofunctions while minimizing material use. Specifically, aroyl-cystine derivatives primarily assemble into stable M-helix nanofibers under equilibrium conditions. These nanofibers enhance fibroblast adhesion and proliferation through stereospecific interactions with chiral cellular membranes. Upon the addition of chemical fuels, these functional nanofibers temporarily transform into non-equilibrium nanospheres, facilitating efficient drug delivery. Subsequently, these nanospheres revert to their original nanofiber state, effectively recycling the drug. The programmable function-shifting ability of this DSA establishes it as a novel, fuel-driven drug delivery vehicle. And the bioactive DSA not only addresses a gap in synthetic DSAs within biological applications but also sets the stage for innovative designs of ′living′ materials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409169-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. De, R. Klajn, Adv. Mater. 2018, 30, 1706750;
- 1bK. Das, L. Gabrielli, L. J. Prins, Angew. Chem. Int. Ed. 2021, 60, 20120–20143.
- 2G. Ragazzon, L. J. Prins, Nat. Nanotechnol. 2018, 13, 882–889.
- 3
- 3aJ. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema, J. H. van Esch, Science 2015, 349, 1075–1079;
- 3bF. Klepel, B. J. Ravoo, Org. Biomol. Chem. 2017, 15, 3840–3842;
- 3cS. A. P. van Rossum, M. Tena-Solsona, J. H. van Esch, R. Eelkema, J. Boekhoven, Chem. Soc. Rev. 2017, 46, 5519–5535;
- 3dJ. S. Valera, A. López-Acosta, T. M. Hermans, Angew. Chem. Int. Ed. 2024, e202406931;
- 3eT. M. Hermans, N. Singh, Angew. Chem. Int. Ed. 2023, 62, e202301529;
- 3fM. D. Pol, K. Dai, R. Thomann, S. Moser, S. K. Roy, C. G. Pappas, Angew. Chem. Int. Ed. 2024, 136, e202404360.
10.1002/ange.202404360 Google Scholar
- 4
- 4aS. Maiti, I. Fortunati, C. Ferrante, P. Scrimin, L. J. Prins, Nat. Chem. 2016, 8, 725–731;
- 4bG. Wang, Y. Liu, Y. Liu, N. Xia, W. Zhou, Q. Gao, S. Liu, Colloids Surf. A 2017, 529, 808–814;
- 4cK. Das, H. Kar, R. Chen, I. Fortunati, C. Ferrante, P. Scrimin, L. Gabrielli, L. J. Prins, J. Am. Chem. Soc. 2023, 145, 898–904;
- 4dZ. H. Zhang, M. G. Howlett, E. Silvester, P. Kukura, S. P. Fletcher, J. Am. Chem. Soc. 2024, 146, 18262–18269.
- 5
- 5aB. G. P. van Ravensteijn, I. K. Voets, W. K. Kegel, R. Eelkema, Langmuir 2020, 36, 10639–10656;
- 5bC. Pan, J. Xu, L. Wang, Y. Jia, J. Li, G. Liu, S. Zhu, B. Yang, Y. Li, CCS Chem. 2023, 5, 669–681;
- 5cX. Lang, Y. Huang, L. He, Y. Wang, U. Thumu, Z. Chu, W. T. S. Huck, H. Zhao, Nat. Commun. 2023, 14, 3084;
- 5dS. M. Morrow, I. Colomer, S. P. Fletcher, Nat. Commun. 2019, 10, 1011.
- 6
- 6aP. Zhao, L. Xu, B. Li, Y. Zhao, Y. Zhao, Y. Lu, M. Cao, G. Li, T.-C. Weng, H. Wang, Y. Zheng, Adv. Mater. 2024, 36, 2311818;
- 6bH. Lee, J. Tessarolo, D. Langbehn, A. Baksi, R. Herges, G. H. Clever, J. Am. Chem. Soc. 2022, 144, 3099–3105;
- 6cS. Hollstein, M. von Delius, Acc. Chem. Res. 2024, 57, 602–612.
- 7
- 7aH. Wang, Y. Song, W. Wang, N. Chen, B. Hu, X. Liu, Z. Zhang, Z. Yu, J. Am. Chem. Soc. 2024, 146, 330–341;
- 7bA. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476–5490;
- 7cN. Singh, G. J. M. Formon, S. De Piccoli, T. M. Hermans, Adv. Mater. 2020, 32, 1906834.
- 8
- 8aY. C. Lin, C. Chipot, S. Scheuring, Nat. Commun. 2020, 11, 230;
- 8bA. Angelova, B. Angelov, M. Drechsler, T. Bizien, Y. E. Gorshkova, Y. R. Deng, Front. Cell. Dev. Biol. 2021, 9, 617984;
- 8cE. H. Mojumdar, C. Grey, E. Sparr, Int. J. Mol. Sci. 2020, 21, 56;
- 8dL. P. Liu, Y. K. Zou, A. Bhattacharya, D. Y. Zhang, S. S. Q. Lang, K. N. Houk, N. K. Devaraj, Nat. Chem. 2020, 12, 1029.
- 9
- 9aB. Chang, M. Zhang, G. Qing, T. Sun, Small 2015, 11, 1097–1112;
- 9bM. Zhang, G. Qing, T. Sun, Chem. Soc. Rev. 2012, 41, 1972–1984.
- 10
- 10aA. Desai, T. J. Mitchison, Annu. Rev. Cell Dev. Biol. 1997, 13, 83–117;
- 10bM. Jurasek, M. Cernohorska, J. Rehulka, V. Spiwok, T. Sulimenko, E. Draberova, M. Darmostuk, S. Gurska, I. Frydrych, R. Burianova, T. Ruml, M. Hajduch, P. Bartunek, P. Draber, P. Dzubak, P. B. Drasar, D. Sedlak, J. Steroid Biochem. 2018, 183, 68–79;
- 10cD. Melgari, C. Barbier, G. Dilanian, C. Rucker-Martin, N. Doisne, A. Coulombe, S. N. Hatem, E. Balse, J. Mol. Cell. Cardiol. 2020, 144, 127–139.
- 11
- 11aR. de Rooij, E. Kuhl, Biophys. J. 2018, 114, 201–212;
- 11bK. Dai, M. D. Pol, L. Saile, A. Sharma, B. Liu, R. Thomann, J. L. Trefs, D. Y. Qiu, S. Moser, S. Wiesler, B. N. Balzer, T. Hugel, H. J. Jessen, C. G. Pappas, J. Am. Chem. Soc. 2023, 145, 26086–26094.
- 12
- 12aJ. T. Kindt, J. W. Szostak, A. N. Wang, ACS Nano 2020, 14, 14627–14634;
- 12bR. Fernandez-Garcia, J. C. Munoz-Garcia, M. Wallace, L. Fabian, E. Gonzalez-Burgos, M. P. Gomez-Serranillos, R. Raposo, F. Bolas-Fernandez, M. P. Ballesteros, A. M. Healy, Y. Z. Khimyak, D. R. Serrano, J. Controlled Release 2022, 341, 716–732;
- 12cA. Englert, F. Majer, J. L. Schiessl, A. J. C. Kuehne, M. von Delius, Chem 2024, 10, 910–923.
- 13
- 13aO. E. Shklyaev, A. C. Balazs, Nat. Nanotechnol. 2024, 19, 146–159;
- 13bM. Sun, J. Deng, A. Walther, Angew. Chem. Int. Ed. 2023, 62, e202214499;
- 13cK. Liu, A. Blokhuis, C. van Ewijk, A. Kiani, J. Wu, W. H. Roos, S. Otto, Nat. Chem. 2024, 16, 79–88.
- 14J. Boekhoven, A. M. Brizard, K. N. K. Kowlgi, G. J. M. Koper, R. Eelkema, J. H. van Esch, Angew. Chem. Int. Ed. 2010, 49, 4825–4828.
- 15F. M. Menger, K. L. Caran, J. Am. Chem. Soc. 2000, 122, 11679–11691.
- 16Y.-x. Xu, Y.-y. Huang, R.-r. Song, Y.-l. Ren, X. Chen, C. Zhang, F. Mao, X.-k. Li, J. Zhu, S.-s. Ni, J. Wan, J. Li, Eur. J. Med. Chem. 2020, 203, 112500.
- 17Y. Zhao, P. Zhao, J. Zhang, Y. Zhao, B. Li, G. Hao, Y. An, W. Zhou, Y. Lu, L.-Y. Chou, Y. Zheng, CCS Chem. 2023, 6, 1571–1580.
- 18
- 18aS. Liu, C. Dun, Q. Jiang, Z. Xuan, F. Yang, J. Guo, J. J. Urban, M. T. Swihart, Nat. Commun. 2024, 15, 1167;
- 18bP. Zhao, J. Zhang, A. Mohsin, J. Huang, X. Hou, X. Jin, X. Zhu, Appl. Surf. Sci. 2022, 596, 153589.
- 19
- 19aY. J. Li, X. Ran, Q. Y. Li, Q. Q. Gao, L. J. Guo, Chem. Asian J. 2016, 11, 2157–2166;
- 19bQ. Zhang, S. Crespi, R. Toyoda, R. Costil, W. R. Browne, D.-H. Qu, H. Tian, B. L. Feringa, J. Am. Chem. Soc. 2022, 144, 4376–4382;
- 19cH. Feng, N. Zheng, W. Peng, C. Ni, H. Song, Q. Zhao, T. Xie, Nat. Commun. 2022, 13, 397.
- 20S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786.
- 21
- 21aP. Zhao, L. Wang, Y. Wu, T. Yang, Y. Ding, H. G. Yang, A. Hu, Macromolecules 2019, 52, 4376–4384;
- 21bY. Hao, J. Wang, J. Ma, X. Yu, Z. Li, S. Wu, S. Tian, H. Ma, S. He, X. Zhang, Bioorg. Chem. 2023, 137, 106584.
- 22E. Roduner, S. G. Radhakrishnan, Chem. Soc. Rev. 2016, 45, 2768–2784.
- 23J. Zhang, J. Liu, H. Li, X. Li, Y. Zhao, P. Zhao, J. Cui, B. Yang, Y. Song, Y. Zheng, ACS Appl. Mater. Interfaces 2022, 14, 20073–20082.
- 24J. Tang, Y. Cheng, M. Ding, C. Wang, ChemPlusChem 2023, 88, e202300449.
- 25
- 25aR. K. Cheedarala, J.-H. Jeon, C.-D. Kee, I.-K. Oh, Adv. Funct. Mater. 2014, 24, 6005–6015;
- 25bP. Zhao, Y. Dai, Y. Wu, L. Wang, B. Huang, Y. Ding, A. Hu, Polym. Chem. 2017, 8, 5734–5740.
- 26R. A. Pérez-Camargo, R. d'Arcy, A. Iturrospe, A. Arbe, N. Tirelli, A. J. Müller, Macromolecules 2019, 52, 2093–2104.
- 27
- 27aX. Wang, B. Wu, Y. Zhang, X. Dou, C. Zhao, C. Feng, Acta Biomater. 2022, 153, 204–215;
- 27bJ. Li, Y. Cui, Y.-L. Lu, Y. Zhang, K. Zhang, C. Gu, K. Wang, Y. Liang, C.-S. Liu, Nat. Commun. 2023, 14, 5030;
- 27cJ. L. Greenfield, J. Wade, J. R. Brandt, X. Shi, T. J. Penfold, M. J. Fuchter, Chem. Sci. 2021, 12, 8589–8602.
- 28G. Liu, X. Li, J. Sheng, P.-Z. Li, W. K. Ong, S. Z. F. Phua, H. Ågren, L. Zhu, Y. Zhao, ACS Nano 2017, 11, 11880–11889.
- 29
- 29aJ. Liu, F. Yuan, X. Ma, D.-i. Y. Auphedeous, C. Zhao, C. Liu, C. Shen, C. Feng, Angew. Chem. Int. Ed. 2018, 57, 6475–6479;
- 29bH. Lu, Y. Zhao, S. Qin, Y. Zhang, J. Liu, J. Zhang, C. Feng, W. Zhao, Adv. Fiber Mater. 2023, 5, 377–387.
- 30
- 30aL. Albert, O. Vázquez, Chem. Commun. 2019, 55, 10192–10213;
- 30bL. Wang, Y. Xue, J. Xing, K. Song, J. Lin, Annu. Rev. Plant Biol. 2018, 69, 525–551.
- 31
- 31aZ. Sun, C. Song, C. Wang, Y. Hu, J. Wu, Mol. Pharmaceutics 2020, 17, 373–391;
- 31bY. Shao, L. Xiang, W. Zhang, Y. Chen, J. Controll. Release 2022, 352, 600–618;
- 31cJ. Li, D. J. Mooney, Nat. Rev. Mater. 2016, 1, 16071;
- 31dF. Rizzo, N. S. Kehr, Adv. Healthcare Mater. 2021, 10, 2001341;
- 31eM. Lei, Q. Wang, R. Gu, D.-H. Qu, Responsive Materials 2024, 2, e20230027.
10.1002/rpm.20230027 Google Scholar
- 32D.-H. Kim, D. C. Martin, Biomaterials 2006, 27, 3031–3037.
- 33
- 33aY. Wang, Y.-X. Lin, Z.-Y. Qiao, H.-W. An, S.-L. Qiao, L. Wang, R. P. Y. J. Rajapaksha, H. Wang, Adv. Mater. 2015, 27, 2627–2634;
- 33bA. Paillard, F. Hindré, C. Vignes-Colombeix, J.-P. Benoit, E. Garcion, Biomaterials 2010, 31, 7542–7554.
- 34D. Schmaljohann, Adv. Drug Delivery Rev. 2006, 58, 1655–1670.
- 35J. Aguiar, P. Carpena, J. A. Molina-Bolívar, C. Carnero Ruiz, J. Colloid Interface Sci. 2003, 258, 116–122.
- 36M. Norouzi, V. Yathindranath, J. A. Thliveris, B. M. Kopec, T. J. Siahaan, D. W. Miller, Sci. Rep-UK 2020, 10, 11292.
- 37R. K. Grötsch, A. Angi, Y. G. Mideksa, C. Wanzke, M. Tena-Solsona, M. J. Feige, B. Rieger, J. Boekhoven, Angew. Chem. Int. Ed. 2018, 57, 14608–14612.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.