Hydrogen Bonds and In situ Photoinduced Metallic Bi0/Ni0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis
Rongjun Sun
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorZijian Zhu
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Formal analysis (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Na Tian
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Funding acquisition (equal), Investigation (equal), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorYihe Zhang
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Hongwei Huang
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Funding acquisition (equal), Investigation (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorRongjun Sun
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorZijian Zhu
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Formal analysis (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Na Tian
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Funding acquisition (equal), Investigation (equal), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorYihe Zhang
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Hongwei Huang
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083 China
Contribution: Funding acquisition (equal), Investigation (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi0 and Ni0 are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi0 strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi0/BiOBr@Ni0/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408862-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 2017, 139, 7586–7594;
- 1bQ. Li, Y. Xia, C. Yang, K. Lv, M. Lei, M. Li, Chem. Eng. J. 2018, 349, 287–296.
- 2D. Xu, S.-N. Zhang, J.-S. Chen, X.-H. Li, Chem. Rev. 2023, 123, 1–30.
- 3P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 2014, 26, 4920–4935.
- 4
- 4aS. Huang, T. Ouyang, B. F. Zheng, M. Dan, Z. Q. Liu, Angew. Chem. Int. Ed. 2021, 60, 9546–9552;
- 4bT. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, ACS Catal. 2018, 8, 2253–2276;
- 4cL. Shi, C. Wu, Y. Wang, Y. Dou, D. Yuan, H. Li, H. Huang, Y. Zhang, I. D. Gates, X. Sun, T. Ma, Adv. Funct. Mater. 2022, 32, 2202571;
- 4dZ. Qian, R. Zhang, Y. Xiao, H. Huang, Y. Sun, Y. Chen, T. Ma, X. Sun, Adv. Energy Mater. 2023, 13, 2300086;
- 4eX. Sun, S. Jiang, H. Huang, H. Li, B. Jia, T. Ma, Angew. Chem. Int. Ed. 2022, 61, e202204880.
- 5
- 5aL. Yuan, M.-Q. Yang, Y.-J. Xu, Nanoscale 2014, 6, 6335–6345;
- 5bH. Hu, X. Zhang, K. Zhang, Y. Ma, H. Wang, H. Li, H. Huang, X. Sun, T. Ma, Adv. Energy Mater. 2024, 14, 2303638.
- 6R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 2023, 35, 2303649.
- 7Y. Jiang, H. Y. Chen, J. Y. Li, J. F. Liao, H. H. Zhang, X. D. Wang, D. B. Kuang, Adv. Funct. Mater. 2020, 30, 2004293.
- 8X. L. Wang, W. Q. Fang, H. F. Wang, H. Zhang, H. Zhao, Y. Yao, H. G. Yang, J. Mater. Chem. A 2013, 1, 14089–14096.
- 9T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48–76.
- 10Z. Jin, Q. Zhang, L. Hu, J. Chen, X. Cheng, Y.-J. Zeng, S. Ruan, T. Ohno, Appl. Catal. B 2017, 205, 569–575.
- 11
- 11aB. Shao, X. Liu, Z. Liu, G. Zeng, Q. Liang, C. Liang, Y. Cheng, W. Zhang, Y. Liu, S. Gong, Chem. Eng. J. 2019, 368, 730–745;
- 11bY. Lan, Z. Li, D. Li, W. Xie, G. Yan, S. Guo, Chem. Eng. J. 2020, 392, 123686–123697.
- 12M. Ou, S. Wan, Q. Zhong, S. Zhang, Y. Song, L. Guo, W. Cai, Y. Xu, Appl. Catal. B 2018, 221, 97–107.
- 13K. B. Jiang, W. Q. Huang, T. T. Song, P. X. Wu, W. F. Wang, Q. S. Chen, M. S. Wang, G. C. Guo, Adv. Funct. Mater. 2023, 33, 2304351.
- 14Y. H. Liu, X. Chu, Y. Jiang, W. Han, Y. Wang, L. H. Shao, G. Zhang, F. M. Zhang, Adv. Funct. Mater. 2024, 34, 2316545.
- 15S. Nayak, G. Swain, K. Parida, ACS Appl. Mater. Interfaces 2019, 11, 20923–20942.
- 16
- 16aM. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 2013, 135, 8452–8455;
- 16bY. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, Adv. Mater. 2017, 29, 1700017.
- 17X. Wu, C. Y. Toe, C. Su, Y. H. Ng, R. Amal, J. Scott, J. Mater. Chem. A 2020, 8, 15302–15318.
- 18Y. Feng, D. Wu, Y. Deng, T. Zhang, K. Shih, Environ. Sci. Technol. 2016, 50, 3119–3127.
- 19Y. Shi, H. Li, C. Mao, G. Zhan, Z. Yang, C. Ling, K. Wei, X. Liu, Z. Ai, L. Zhang, ACS ES&T Eng. 2022, 2, 957–974.
- 20B. Liu, Z. Hu, B. Zhang, B. Liu, G. Li, T. Zhang, J. Ji, K. Li, W. Dai, J. Zhang, H. Huang, ACS Catal. 2023, 13, 7857–7867.
- 21J. Yang, T. Xie, Y. Mei, J. Chen, H. Sun, S. Feng, Y. Zhang, Y. Zhao, J. Wang, X. Li, J. He, H. Chen, Appl. Catal. B 2023, 339, 123149.
- 22C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 2022, 430, 132806.
- 23S. Zhou, H. He, J. Li, Z. Ye, Z. Liu, J. Shi, Y. Hu, W. Cai, Adv. Funct. Mater. 2023, 23, 2313770.
- 24
- 24aS.-q. Guo, Z. Hu, M. Zhen, B. Gu, B. Shen, F. Dong, Appl. Catal. B 2020, 264, 118506;
- 24bH. Yang, S. Luo, Y. Bao, Y. Luo, J. Jin, J. Ma, Inorg. Chem. 2017, 4, 1173–1181;
- 24cL. Zhang, Y. Shi, Z. Wang, C. Hu, B. Shi, X. Cao, Appl. Catal. B 2020, 265, 118536.
- 25Y. Zhang, X. Zhai, N. Wang, J. Sun, F. Ma, K. Dou, P. Ju, J. Duan, B. Hou, J. Environ. Chem. Eng. 2024, 12, 112163.
- 26E. Andris, R. Navrátil, J. Jašík, T. Terencio, M. Srnec, M. Costas, J. Roithová, J. Am. Chem. Soc. 2017, 139, 2757–2765.
- 27M. A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R. d. G. González-Huerta, J. L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, J. Phys. Chem. C. 2014, 118, 22432–22438.
- 28J. Guo, X. Liao, M.-H. Lee, G. Hyett, C.-C. Huang, D. W. Hewak, S. Mailis, W. Zhou, Z. Jiang, Appl. Catal. B 2019, 243, 502–512.
- 29S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guo, W. Zhao, Z. Wang, X. Chen, Chem. Eng. J. 2022, 429, 132519.
- 30X. Fei, L. Zhang, J. Yu, B. Zhu, Front. Nanotechnol. 2021, 3, 698351.
- 31
- 31aR. T. Gao, D. He, L. Wu, K. Hu, X. Liu, Y. Su, L. Wang, Angew. Chem. Int. Ed. 2020, 59, 6213–6218;
- 31bX. Li, W. Zhang, J. Li, G. Jiang, Y. Zhou, S. Lee, F. Dong, Appl. Catal. B 2019, 241, 187–195.
- 32H. Wang, W. Zhang, X. Li, J. Li, W. Cen, Q. Li, F. Dong, Appl. Catal. B 2018, 225, 218–227.
- 33D. Li, R. Li, D. Zhou, F. Zeng, W. Yan, S. Cai, Appl. Surf. Sci. 2022, 586, 152765.
- 34C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 2023, 62, e202218688.
- 35
- 35aZ. Huang, J.-X. Liang, D. Tang, Y. Chen, W. Qu, X. Hu, J. Chen, Y. Dong, D. Xu, D. Golberg, J. Li, X. Tang, Chem 2022, 8, 3008–3017;
- 35bK. Wang, G.-J. Xia, T. Liu, Y. Yun, W. Wang, K. Cao, F. Yao, X. Zhao, B. Yu, Y.-G. Wang, C. Jin, J. He, Y. Li, F. Yang, J. Am. Chem. Soc. 2023, 145, 12760–12770.
- 36X. Wang, K. Wu, W. Cao, K. Rui, W. Wang, R. Zhu, J. Zhu, Z. Yan, Adv. Mater. Interfaces 2022, 10.
- 37C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 2021, 33, 2100317.
- 38Z. Zhu, H. Huang, L. Liu, F. Chen, N. Tian, Y. Zhang, H. Yu, Angew. Chem. Int. Ed. 2022, 61, e202203519.
- 39S. Nayak, K. M. Parida, Sci. Rep. 2019, 9, 2458.
- 40J. Wu, Y. Wang, S. Zhang, Y. Liu, F. Wang, Appl. Catal. B 2023, 332, 122741.
- 41B. An, J. Liu, B. Zhu, F. Liu, G. Jiang, X. Duan, Y. Wang, J. Sun, Chem. Eng. J. 2023, 478, 147344.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.