Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes
Filip J. Aubrecht
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorKennalee Orme
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Indicates that these authors contributed equally.
Contribution: Investigation (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorAiden Saul
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Indicates that these authors contributed equally.
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorHongyi Cai
Materials Science and Engineering, Cornell University, Ithaca, New York, 14853 USA
Contribution: Formal analysis (supporting), Methodology (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Tharindu A. Ranathunge
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Meredith N. Silberstein
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 14853 USA
Contribution: Methodology (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Benjamin R. McDonald
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Conceptualization (lead), Formal analysis (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorFilip J. Aubrecht
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorKennalee Orme
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Indicates that these authors contributed equally.
Contribution: Investigation (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorAiden Saul
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Indicates that these authors contributed equally.
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorHongyi Cai
Materials Science and Engineering, Cornell University, Ithaca, New York, 14853 USA
Contribution: Formal analysis (supporting), Methodology (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Tharindu A. Ranathunge
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Investigation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Meredith N. Silberstein
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 14853 USA
Contribution: Methodology (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Benjamin R. McDonald
Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912 USA
Contribution: Conceptualization (lead), Formal analysis (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408673-sup-0001-misc_information.pdf5.1 MB | Supporting Information |
ange202408673-sup-0001-video1_short.mp4100.4 MB | Supporting Information |
ange202408673-sup-0001-video2_short.mp4155 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aQ. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson, J. H. Waite, J. N. Israelachvili, Proc. Natl. Acad. Sci. USA 2007, 104, 3782–3786;
- 1bE. Faure, C. Falentin-Daudré, C. Jérôme, J. Lyskawa, D. Fournier, P. Woisel, C. Detrembleur, Prog. Polym. Sci. 2013, 38, 236–270.
- 2
- 2aH. L. Fan, J. H. Wang, Z. Tao, J. C. Huang, P. Rao, T. Kurokawa, J. P. Gong, Nat. Commun. 2019, 10, 5127;
- 2bH. Fan, J. Wang, J. P. Gong, Adv. Funct. Mater. 2021, 31, 2009334.
- 3
- 3aQ. Lu, D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang, H. Zeng, Angew. Chem. Int. Ed. 2013, 52, 3944–3948;
- 3bD. Mozhdehi, S. Ayala, O. R. Cromwell, Z. Guan, J. Am. Chem. Soc. 2014, 136, 16128–16131;
- 3cM. Enke, F. Jehle, S. Bode, J. Vitz, M. J. Harrington, M. D. Hager, U. S. Schubert, Macromol. Chem. Phys. 2017, 218;
- 3dH. Fan, J. P. Gong, Adv. Mater. 2021, 33, 2102983;
- 3eH. Geng, P. Zhang, Q. Peng, J. Cui, J. Hao, H. Zeng, Acc. Chem. Res. 2022, 55, 1171–1182.
- 4M. A. Gebbie, W. Wei, A. M. Schrader, T. R. Cristiani, H. A. Dobbs, M. Idso, B. F. Chmelka, J. H. Waite, J. N. Israelachvili, Nat. Chem. 2017, 9, 473–479.
- 5
- 5aU. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Nat. Mater. 2015, 14, 23–36;
- 5bW. Yang, V. R. Sherman, B. Gludovatz, E. Schaible, P. Stewart, R. O. Ritchie, M. A. Meyers, Nat. Commun. 2015, 6, 6649;
- 5cW. Huang, D. Restrepo, J. Y. Jung, F. Y. Su, Z. Liu, R. O. Ritchie, J. McKittrick, P. Zavattieri, D. Kisailus, Adv. Mater. 2019, 31, 1901561;
- 5dA. Rising, M. J. Harrington, Chem. Rev. 2023, 123, 2155–2199.
- 6S. W. Cranford, J. de Boer, C. van Blitterswijk, M. J. Buehler, Adv. Mater. 2013, 25, 802–824.
- 7
- 7aG. L. Dignon, R. B. Best, J. Mittal, Annu. Rev. Phys. Chem. 2020, 71, 53–75;
- 7bJ. A. Villegas, M. Heidenreich, E. D. Levy, Nat. Chem. Biol. 2022, 18, 1319–1329.
- 8S. Kim, H. Y. Yoo, J. Huang, Y. Lee, S. Park, Y. Park, S. Jin, Y. M. Jung, H. Zeng, D. S. Hwang, Y. Jho, ACS Nano 2017, 11, 6764–6772.
- 9
- 9aT. Priemel, E. Degtyar, M. N. Dean, M. J. Harrington, Nat. Commun. 2017, 8, 14539;
- 9bM. Renner-Rao, M. Clark, M. J. Harrington, Langmuir 2019, 35, 15992–16001;
- 9cF. Jehle, E. Macías-Sánchez, S. Sviben, P. Fratzl, L. Bertinetti, M. J. Harrington, Nat. Commun. 2020, 11, 862;
- 9dF. Jehle, T. Priemel, M. Strauss, P. Fratzl, L. Bertinetti, M. J. Harrington, ACS Nano 2021, 15, 6829–6838;
- 9eL. Youssef, M. Renner-Rao, E. D. Eren, F. Jehle, M. J. Harrington, ACS Nano 2023, 17, 2294–2305.
- 10
- 10aW. Kunz, J. Henle, B. W. Ninham, Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37;
- 10bY. Zhang, P. S. Cremer, Curr. Opin. Chem. Biol. 2006, 10, 658–663;
- 10cB. Kang, H. Tang, Z. Zhao, S. Song, ACS Omega 2020, 5, 6229–6239.
- 11
- 11aY. Zhang, S. Furyk, D. E. Bergbreiter, P. S. Cremer, J. Am. Chem. Soc. 2005, 127, 14505–14510;
- 11bY. Zhang, S. Furyk, L. B. Sagle, Y. Cho, D. E. Bergbreiter, P. S. Cremer, J. Phys. Chem. C 2007, 111, 8916–8924;
- 11cJ. Paterová, K. B. Rembert, J. Heyda, Y. Kurra, H. I. Okur, W. R. Liu, C. Hilty, P. S. Cremer, P. Jungwirth, J. Phys. Chem. B 2013, 117, 8150–8158;
- 11dN. Schwierz, D. Horinek, R. R. Netz, Langmuir 2010, 26, 7370–7379.
- 12
- 12aG. O. Lloyd, J. W. Steed, Nat. Chem. 2009, 1, 437–442;
- 12bM. Qiu, S. Long, B. Li, L. Yan, W. Xie, Y. Niu, X. Wang, Q. Guo, A. Xia, J. Phys. Chem. C 2013, 117, 21870–21878;
- 12cM. Jaspers, A. E. Rowan, P. H. J. Kouwer, Adv. Funct. Mater. 2015, 25, 6503–6510;
- 12dL. Liu, R. Kou, G. Liu, Soft Matter 2017, 13, 68–80;
- 12eQ. He, Y. Huang, S. Wang, Adv. Funct. Mater. 2018, 28, 1705069;
- 12fK. I. Assaf, W. M. Nau, Angew. Chem. Int. Ed. 2018, 57, 13968–13981;
- 12gH. Yuan, G. Liu, Soft Matter 2020, 16, 4087–4104;
- 12hS. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma, Y. Zhao, C.-Y. Lo, C. Wang, D. Wu, B. Yao, J. Strzalka, H. Zhou, X. Zhu, X. He, Adv. Mater. 2021, 33, 2007829;
- 12iW. W. Loh, Q. Lin, C. C. Lim, L. Guo, Y. K. Tang, X. J. Loh, J. Y. C. Lim, Materials Today Chemistry 2022, 23, 100674;
- 12jW. Wei, Adv. Sci. 2023, e2302057;
- 12kM. Hohenschutz, P. Bauduin, C. G. Lopez, B. Förster, W. Richtering, Angew. Chem. Int. Ed. 2023, 62, e202210208.
- 13Y. Li, Y. Wang, G. Huang, X. Ma, K. Zhou, J. Gao, Angew. Chem. Int. Ed. 2014, 53, 8074–8078.
- 14J. B. Schlenoff, Langmuir 2014, 30, 9625–9636.
- 15
- 15aX. Zhu, C. Wei, H. Chen, C. Zhang, H. Peng, D. Wang, J. Yuan, J. H. Waite, Q. Zhao, Adv. Funct. Mater. 2022, 32, 2105464;
- 15bC. Zhang, Y. Cai, Q. Zhao, Macromol. Rapid Commun. 2022, 43, 2200191.
- 16
- 16aP. H. Von Hippel, V. Peticolas, L. Schack, L. Karlson, Biochemistry 1973, 12, 1256–1264;
- 16bM. J. Garvey, I. D. Robb, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 1979, 75, 993–1000.
- 17Y. Marcus, Chem. Rev. 2009, 109, 1346–1370.
- 18G. Trefalt, I. Szilagyi, G. Téllez, M. Borkovec, Langmuir 2017, 33, 1695–1704.
- 19K. P. Gregory, G. R. Elliott, H. Robertson, A. Kumar, E. J. Wanless, G. B. Webber, V. S. J. Craig, G. G. Andersson, A. J. Page, Phys. Chem. Chem. Phys. 2022, 24, 12682–12718.
- 20L. Medda, C. Carucci, D. F. Parsons, B. W. Ninham, M. Monduzzi, A. Salis, Langmuir 2013, 29, 15350–15358.
- 21
- 21aP. Lo Nostro, B. W. Ninham, Chem. Rev. 2012, 112, 2286–2322;
- 21bA. Salis, B. W. Ninham, Chem. Soc. Rev. 2014, 43, 7358–7377.
- 22H. D. B. Jenkins, Y. Marcus, Chem. Rev. 1995, 95, 2695–2724.
- 23K. P. Gregory, E. J. Wanless, G. B. Webber, V. S. J. Craig, A. J. Page, Chem. Sci. 2021, 12, 15007–15015.
- 24
- 24aA. Hamabata, P. H. Von Hippel, Biochemistry 1973, 12, 1264–1271;
- 24bX. Chen, T. Yang, S. Kataoka, P. S. Cremer, J. Am. Chem. Soc. 2007, 129, 12272–12279.
- 25
- 25aS. H. Oh, R. Ryoo, M. S. Jhon, Macromolecules 1990, 23, 1671–1675;
- 25bY. D. Livney, O. Ramon, E. Kesselman, U. Cogan, S. Mizrahi, Y. Cohen, J. Polym. Sci. Part B 2001, 39, 2740–2750;
- 25cY. D. Livney, I. Portnaya, B. Faupin, O. Ramon, Y. Cohen, U. Cogan, S. Mizrahi, J. Polym. Sci. Part B 2003, 41, 508–519;
- 25dI. Shechter, O. Ramon, I. Portnaya, Y. Paz, Y. D. Livney, Macromolecules 2010, 43, 480–487.
- 26
- 26aL.-H. Wang, Z.-D. Zhang, C.-Y. Hong, X.-H. He, W. You, Y.-Z. You, Adv. Mater. 2015, 27, 3202–3207;
- 26bL.-H. Wang, T. Wu, Z. Zhang, Y.-Z. You, Macromolecules 2016, 49, 362–366.
- 27
- 27aK. D. Collins, Biophys. J. 1997, 72, 65–76;
- 27bK. D. Collins, Methods 2004, 34, 300–311.
- 28V. Mazzini, V. S. J. Craig, ACS Cent. Sci. 2018, 4, 1056–1064.
- 29Y. Nagano, M. Sakiyama, T. Fujiwara, Y. Kondo, J. Phys. Chem. 1988, 92, 5823–5827.
- 30D. W. Smith, J. Chem. Educ. 1977, 54, 540.
- 31L. Li, X. Wang, S. Gao, S. Zheng, X. Zou, J. Xiong, W. Li, F. Yan, Adv. Mater. 2024, 36, e2308547.
- 32T. Nakajima, K.-i. Hoshino, H. Guo, T. Kurokawa, J. P. Gong, Gels 2021, 7.
- 33A. Miserez, J. Yu, P. Mohammadi, Chem. Rev. 2023, 123, 2049–2111.
- 34A. N. Semenov, M. Rubinstein, Macromolecules 2002, 35, 4821–4837.
- 35E. Karjalainen, N. Suvarli, H. Tenhu, Polym. Chem. 2020, 11, 5870–5883.
- 36C. Lang, J. A. LaNasa, N. Utomo, Y. Xu, M. J. Nelson, W. Song, M. A. Hickner, R. H. Colby, M. Kumar, R. J. Hickey, Nat. Commun. 2019, 10, 3855.
- 37A. L. Dobson, S. Huang, C. N. Bowman, Macromolecules 2024.
- 38M. Wang, P. Zhang, M. Shamsi, J. L. Thelen, W. Qian, V. K. Truong, J. Ma, J. Hu, M. D. Dickey, Nat. Mater. 2022, 21, 359–365.
- 39F. Chen, X. Li, Y. Yu, Q. Li, H. Lin, L. Xu, H. C. Shum, Nat. Commun. 2023, 14, 2793.
- 40
- 40aR. R. Poissant, Y. Huang, R. A. Secco, Microporous Mesoporous Mater. 2004, 74, 231–238;
- 40bW. H. Stephen, Phys. Educ. 2005, 40, 468;
10.1088/0031-9120/40/5/008 Google Scholar
- 40cL. Caillier, E. T. de Givenchy, R. Levy, Y. Vandenberghe, S. Géribaldi, F. Guittard, Eur. J. Med. Chem. 2009, 44, 3201–3208;
- 40dL. E. Prevette, E. N. Nikolova, H. M. Al-Hashimi, M. M. Banaszak Holl, Mol. Pharm. 2012, 9, 2743–2749;
- 40eR. Novoa-Carballal, M. Martin-Pastor, E. Fernandez-Megia, ACS Macro Lett. 2021, 10, 1474–1479.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.