Ligand-Hybridization Activates Lattice-Hydroxyl-Groups of NiCo(OH)x Nanowires for Efficient Electrosynthesis
Dr. Xupo Liu
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorXihui Wang
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorChenxing Mao
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorJiayao Qiu
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorRan Wang
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorYi Liu
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ye Chen
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Deli Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorDr. Xupo Liu
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorXihui Wang
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorChenxing Mao
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorJiayao Qiu
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorRan Wang
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorYi Liu
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ye Chen
Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Deli Wang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorAbstract
Electrochemical dehydrogenation of hydroxides plays a crucial role in the formation of high-valence metal active sites toward 5-hydroxymethylfurfural oxidation reaction (HMFOR) to produce the value-added chemical of 2,5-furandicarboxylic (FDCA). Herein, we construct benzoic acid ligand-hybridized NiCo(OH)x nanowires (BZ-NiCo(OH)x) with ample electron-deficient Ni/Co sites for HMFOR. The robust electron-withdrawing capability of benzoic acid ligands in BZ-NiCo(OH)x speeds up the electrochemical activation and dehydrogenation of lattice-hydroxyl-groups (M2+−O−H⇌M3+−O), boosting the formation of abundant electron-deficient and high-valence Ni/Co sites. DFT calculation reveals that the deintercalation proton is prone to establishing a hydrogen bridge with the carbonyl group in benzoic acid, facilitating the proton transfer. Coupled with the synergistic oxidation of Ni/Co sites on hydroxyl and aldehyde groups, BZ-NiCo(OH)x delivers a remarkable current density of 111.20 mA cm−2 at 1.4 V for HMFOR, exceeding that of NiCo(OH)x by approximately fourfold. And the FDCA yield and Faraday efficiency are as high as 95.24 % and 95.39 %, respectively. The ligand-hybridized strategy in this work introduces a novel perspective for designing high-performance transition metal-based electrocatalysts for biomass conversion.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408109-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. G. Cha, K. S. Choi, Nat. Chem. 2015, 7, 328–333;
- 1bG. Zhao, G. Hai, P. Zhou, Z. Liu, Y. Zhang, B. Peng, W. Xia, X. Huang, G. Wang, Adv. Funct. Mater. 2023, 33, 2213170;
- 1cW. Lai, Y. Qiao, Y. Wang, H. Huang, Adv. Mater. 2023, 35, e2306288.
- 2
- 2aY. Lu, T. Liu, Y. C. Huang, L. Zhou, Y. Li, W. Chen, L. Yang, B. Zhou, Y. Wu, Z. Kong, Z. Huang, Y. Li, C. Dong, S. Wang, Y. Zou, ACS Catal. 2022, 12, 4242–4251;
- 2bB. J. Taitt, D. Nam, K. Choi, ACS Catal. 2018, 9, 660–670.
- 3
- 3aB. Zhou, Y. Li, Y. Zou, W. Chen, W. Zhou, M. Song, Y. Wu, Y. Lu, J. Liu, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2021, 60, 22908–22914;
- 3bJ. Woo, B. C. Moon, U. Lee, H. S. Oh, K. H. Chae, Y. Jun, B. K. Min, D. K. Lee, ACS Catal. 2022, 12, 4078–4091.
- 4G. Yang, Y. Jiao, H. Yan, Y. Xie, A. Wu, X. Dong, D. Guo, C. Tian, H. Fu, Adv. Mater. 2020, 32, e2000455.
- 5
- 5aC. Liu, X. R. Shi, K. Yue, P. Wang, K. Zhan, X. Wang, B. Y. Xia, Y. Yan, Adv. Mater. 2023, 35, 2211177;
- 5bJ. Zhang, P. Yu, G. Zeng, F. Bao, Y. Yuan, H. Huang, J. Mater. Chem. A 2021, 9, 9685–9691.
- 6Y. Yang, D. Xu, B. Zhang, Z. Xue, T. Mu, Chem. Eng. J. 2021, 433, 133842.
- 7H. Wang, C. Li, J. An, Y. Zhuang, S. Tao, J. Mater. Chem. A 2021, 9, 18421–18430.
- 8S. Li, S. Wang, Y. Wang, J. He, K. Li, Y. Xu, M. Wang, S. Zhao, X. Li, X. Zhong, J. Wang, Adv. Funct. Mater. 2023, 33, 2214488.
- 9
- 9aB. Zhang, H. Fu, T. Mu, Green Chem. 2022;
- 9bX. Lu, K. Wu, B. Zhang, J. Chen, F. Li, B. Su, P. Yan, J. Chen, W. Qi, Angew. Chem. Int. Ed. 2021, 60, 14528–14535.
- 10
- 10aD. Chen, Y. Ding, X. Cao, L. Wang, H. Lee, G. Lin, W. Li, G. Ding, L. Sun, Angew. Chem. Int. Ed. 2023, 62, 202309478;
- 10bW. Chen, C. Xie, Y. Wang, Y. Zou, C. Dong, Y. Huang, Z. Xiao, Z. Wei, S. Du, C. Chen, B. Zhou, J. Ma, S. Wang, Chem 2020, 6, 2974–2993;
- 10cJ. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao, R. Huang, C. Wan, L.-M. Liu, X. Duan, L. Guo, Nat. Catal. 2021, 4, 1050–1058.
- 11Y. Lu, C. Dong, Y. Huang, Y. Zou, Y. Liu, Y. Li, N. Zhang, W. Chen, L. Zhou, H. Lin, S. Wang, Sci. China Chem. 2020, 63, 980–986.
- 12
- 12aL. Wang, J. Cao, C. Lei, Q. Dai, B. Yang, Z. Li, X. Zhang, C. Yuan, L. Lei, Y. Hou, ACS Appl. Mater. Interfaces 2019, 11, 27743–27750;
- 12bX.-J. Bai, W.-X. He, X.-Y. Lu, Y. Fu, W. Qi, J. Mater. Chem. A 2021, 9, 14270–14275.
- 13X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu, J.-L. Luo, Appl. Catal. B 2020, 278, 119339.
- 14W. Liu, D. Zheng, T. Deng, Q. Chen, C. Zhu, C. Pei, H. Li, F. Wu, W. Shi, S. Yang, Y. Zhu, X. Cao, Angew. Chem. Int. Ed. 2021, 60, 10614–10619.
- 15H. Xu, J. Chen, Z. Zhang, C. T. Hung, J. Yang, W. Li, Adv. Mater. 2023, 35, e2207522.
- 16J. Miao, M. Xue, H. Itoh, Q. Feng, J. Mater. Chem. 2006, 16, 474–480.
- 17
- 17aW. Chen, Y. Wang, B. Wu, J. Shi, Y. Li, L. Xu, C. Xie, W. Zhou, Y. C. Huang, T. Wang, S. Du, M. Song, D. Wang, C. Chen, J. Zheng, J. Liu, C. L. Dong, Y. Zou, J. Chen, S. Wang, Adv. Mater. 2022, 34, 2105320;
- 17bY. Yang, W. H. Lie, R. R. Unocic, J. A. Yuwono, M. Klingenhof, T. Merzdorf, P. W. Buchheister, M. Kroschel, A. Walker, L. C. Gallington, L. Thomsen, P. V. Kumar, P. Strasser, J. A. Scott, N. M. Bedford, Adv. Mater. 2023, 35, 2305573.
- 18Z. Yang, S. Wang, C. Wei, L. Chen, Z. Xue, T. Mu, Energy Environ. Sci. 2024, 17, 1603–1611.
- 19X. Liu, R. Wang, M. Wei, X. Wang, J. Qiu, J. Zhang, S. Li, Y. Chen, J. Colloid Interface Sci. 2024, 657, 438–448.
- 20M. T. Bender, Y. C. Lam, S. Hammes-Schiffer, K. S. Choi, J. Am. Chem. Soc. 2020, 142, 21538–21547.
- 21
- 21aZ. Zhou, Y. Xie, L. Sun, Z. Wang, W. Wang, L. Jiang, X. Tao, L. Li, X. Li, G. Zhao, Appl. Catal. B 2022, 305, 121072;
- 21bY. Sun, J. Wang, Y. Qi, W. Li, C. Wang, Adv. Sci. 2022, 9, e2200957.
- 22Z. Yang, B. Zhang, C. Yan, Z. Xue, T. Mu, Appl. Catal. B 2023, 330, 122590.
- 23
- 23aE. Olsson, G. Chai, M. Dove, Q. Cai, Nanoscale 2019, 11, 5274–5284;
- 23bG. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901–9904;
- 23cG. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978–9985.
- 24
- 24aY. Song, W. Xie, Y. Song, H. Li, S. Li, S. Jiang, J. Y. Lee, M. Shao, Appl. Catal. B 2022, 312, 121400;
- 24bY. Lu, C.-L. Dong, Y.-C. Huang, Y. Z. Z. Liu, Y. Liu, Y. Li, N. He, J. Shi, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 19215–19221;
- 24cK. Hu, M. Zhang, B. Liu, Z. Yang, R. Li, K. Yan, J. Mol. Catal. 2021, 504, 111459;
- 24dY. Zhu, J. Shi, Y. Li, Y. Lu, B. Zhou, S. Wang, Y. Zou, J. Energy Chem. 2022, 74, 85–90;
- 24eM. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang, H. G. Cha, Appl. Catal. B 2019, 242, 85–91;
- 24fS. Liang, L. Pan, T. Thomas, B. Zhub, C. Chen, J. Zhang, H. Shen, J. Liu, M. Yang, Chem. Eng. J. 2021, 415, 128864;
- 24gZ. Zhao, T. Guo, X. Luo, X. Qin, L. Zheng, L. Yu, Z. Lv, D. Ma, H. Zheng, Catal. Sci. Technol. 2022, 12, 3817–3825.
- 25
- 25aX. Pang, H. Bai, H. Zhao, W. Fan, W. Shi, ACS Catal. 2022, 12, 1545–1557;
- 25bK. Gu, D. Wang, C. Xie, T. Wang, G. Huang, Y. Liu, Y. Zou, L. Tao, S. Wang, Angew. Chem. Int. Ed. 2021, 133, 20415–20420;
- 25cJ. Liu, S. Tao, Adv. Sci. 2023, 10, 2302641;
- 25dM. Sun, Y. Wang, C. Sun, Y. Qi, J. Cheng, Y. Song, L. Zhang, Chin. Chem. Lett. 2022, 33, 385–389;
- 25eS. Yang, X. Xiang, Z. He, W. Zhong, C. Jia, Z. Gong, N. Zhang, S. Zhao, Y. Chen, Chem. Eng. J. 2023, 457, 141344;
- 25fX. Deng, G. Xu, Y. Zhang, L. Wang, J. Zhang, J. Li, X. Fu, J. Luo, Angew. Chem. Int. Ed. 2021, 60, 20535–20542;
- 25gN. Jiang, B. You, R. Boonstra, I. M. Terrero Rodriguez, Y. Sun, ACS Energy Lett. 2016, 1, 386–390;
- 25hG. Liu, T. Nie, Z. Song, X. Sun, T. Shen, S. Bai, L. Zheng, Y. F. Song, Angew. Chem. Int. Ed. 2023, 62, 202311696;
- 25iY. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li, W. Chen, L. Yang, B. Zhou, Y. Wu, Z. Kong, Z. Huang, Y. Li, C.-L. Dong, S. Wang, Y. Zou, ACS Catal. 2022, 12, 4242–4251;
- 25jW.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G. W. Huber, ACS Catal. 2018, 8, 5533–5541;
- 25kJ. Wang, Z. Zhao, C. Shen, H. Liu, X. Pang, M. Gao, J. Mu, F. Cao, G. Li, Catal. Sci. Technol. 2021, 11, 2480–2490;
- 25lR. Ge, W. Ye, L. Zezhou, M. Xu, S.-M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem. Int. Ed. 2022, 61, e202200211;
- 25mC. Li, F. Wang, Y. Nie, L. Wang, Z. Zhang, T. Liu, B. He, Y. Ma, L. Zang, Chem. Eng. J. 2024, 481, 148580.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.