Zinc-Catalyzed Enantioselective Formal (3+2) Cycloadditions of Bicyclobutanes with Imines: Catalytic Asymmetric Synthesis of Azabicyclo[2.1.1]hexanes
Feng Wu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWen-Biao Wu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205 P. R. China.
These authors contributed equally to this work.
Search for more papers by this authorYuanjiu Xiao
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZhenxing Li
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorLei Tang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHeng-Xian He
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXue-Chun Yang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorJi-Jie Wang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorYuanlin Cai
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorTong-Tong Xu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorJia-Hao Tao
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Guoqiang Wang
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Jian-Jun Feng
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorFeng Wu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWen-Biao Wu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205 P. R. China.
These authors contributed equally to this work.
Search for more papers by this authorYuanjiu Xiao
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorZhenxing Li
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorLei Tang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorHeng-Xian He
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorXue-Chun Yang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorJi-Jie Wang
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorYuanlin Cai
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorTong-Tong Xu
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorJia-Hao Tao
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Guoqiang Wang
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Jian-Jun Feng
State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082 P. R. China
Search for more papers by this authorAbstract
The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94 % and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.
Conflict of Interests
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406548-sup-0001-misc_information.pdf13.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Chu, Y. Bu, X. Yang, Front. Oncol. 2021, 11, 785855;
- 1bL. A. Nguyen, H. He, C. Pham-Huy, J. Biomed. Sci. 2006, 2, 85–100.
- 2
- 2aJ. Ceramella, D. Iacopetta, A. Franchini, M. D. Luca, C. Saturnino, I. Andreu, M. S. Sinicropi, A. Catalano, Appl. Sci. 2022, 12, 10909;
- 2bH. U. Blaser, Rend. Fis. Acc. Lincei. 2013, 24, 213–216.
- 3
- 3aF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756;
- 3bF. Lovering, Med. Chem. Commun. 2013, 4, 515–519.
- 4For recent reviews on BCPs, see:
- 4aB. R. Shire, E. A. Anderson, JACS Au 2023, 3, 1539–1553;
- 4bJ. M. Anderson, N. D. Measom, J. A. Murphy, D. L. Poole, Angew. Chem. Int. Ed. 2021, 60, 24754–24769;
- 4cM. M. D. Pramanik, H. Qian, W. .-J. Xiao, J. .-R. Chen, Org. Chem. Front. 2020, 7, 2531–2537;
- 4dX. Ma, L. N. Pham, Asian J. Org. Chem. 2020, 9, 8–22;
- 4eF. .-S. He, S. Xie, Y. Yao, J. Wu, Chin. Chem. Lett. 2020, 31, 3065–3072;
- 4fJ. Kanazawa, M. Uchiyama, Synlett. 2019, 30, 1–11.
- 5Representative examples for synthesis of BCHs, see:
- 5aA. Cairncross, E. P. Blanchard Jr, J. Am. Chem. Soc. 1966, 88, 496–504;
- 5bA. De Meijere, H. Wenck, F. Seyed-Mahdavi, H. G. Viehe, V. Gallez, I. Erden, Tetrahedron 1986, 42, 1291–1297;
- 5cP. Wipf, M. A. A. Walczak, Angew. Chem. Int. Ed. 2006, 45, 4172–4175;
- 5dR. Kleinmans, T. Pinkert, S. Dutta, T. O. Paulisch, H. Keum, C. G. Daniliuc, F. Glorius, Nature 2022, 605, 477–482;
- 5eR. Kleinmans, S. Dutta, K. Ozols, H. Shao, F. Schäfer, R. E. Thielemann, H. T. Chan, C. G. Daniliuc, K. N. Houk, F. Glorius, J. Am. Chem. Soc. 2023, 145, 12324–12332;
- 5fS. Dutta, D. Lee, K. Ozols, C. G. Daniliuc, R. Shintani, F. Glorius, J. Am. Chem. Soc. 2024, 146, 2789–2797;
- 5gR. Guo, Y.-C. Chang, L. Herter, C. Salome, S. E. Braley, T. C. Fessard, M. K. Brown, J. Am. Chem. Soc. 2022, 144, 7988–7994;
- 5hS. Agasti, F. Beltran, E. Pye, N. Kaltsoyannis, G. E. M. Crisenza, D. J. Procter, Nat. Chem. 2023, 15, 535–541;
- 5iM. Xu, Z. Wang, Z. Sun, Y. Ouyang, Z. Ding, T. Yu, L. Xu, P. Li, Angew. Chem. Int. Ed. 2022, 61, e202214507;
- 5jY. Liu, S. Lin, Y. Li, J.-H. Xue, Q. Li, H. Wang, ACS Catal. 2023, 13, 5096–5103;
- 5kN. Radhoff, C. G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 2023, 62, e202304771;
- 5lD. Ni, S. Hu, X. Tan, Y. Yu, Z. Li, L. Deng, Angew. Chem. Int. Ed. 2023, e202308606; Angew. Chem. 2023, e202308606;
- 5mL. Tang, Y. Xiao, F. Wu, J.-L. Zhou, T.-T. Xu, J.-J. Feng, Angew. Chem. Int. Ed. 2023, 62, e202310066;
- 5nH. Yan, Y. Liu, X. Feng, L. Shi, Org. Lett. 2023, 25, 8116–8120;
- 5oH. Ren, T. Li, J. Xing, Z. Li, Y. Zhang, X. Yu, J. Zheng, Org. Lett. 2024, 26, 1745–1750;
- 5pA. Denisenko, P. Garbuz, S. V. Shishkina, N. M. Voloshchuk, P. K. Mykhailiuk, Angew. Chem. Int. Ed. 2020, 59, 20515–20521; Angew. Chem. 2020, 132, 20696–20702;
- 5qK. Takao, H. Kai, A. Yamada, Y. Fukushima, D. Komatsu, A. Ogura, K. Yoshida, Angew. Chem. Int. Ed. 2019, 58, 9851–9855;
- 5rM. Reinhold, J. Steinebach, C. Golz, J. C. L. Walker, Chem. Sci. 2023, 14, 9885–9891;
- 5sJ. M. Posz, N. Sharma, P. A. Royalty, Y. Liu, C. Salome, T. C. Fessard, M. K. Brown, J. Am. Chem. Soc. 2024, 146, 10142–10149;
- 5tJ.-J. Wang, L. Tang, Y. Xiao, W.-B. Wu, G. Wang, J.-J. Feng, Angew. Chem. Int. Ed. 2024, 63, e202405222;
- 5uQ.-Q. Hu, L.-Y. Wang, X.-H. Chen, Z.-X. Geng, J. Chen, L. Zhou, Angew. Chem. Int. Ed. 2024, 63, e202405781.
- 6For representative examples of BCHeps synthesis, see:
- 6aA. S. Harmata, T. E. Spiller, M. J. Sowden, C. R. J. Stephenson, J. Am. Chem. Soc. 2021, 143, 21223–21228;
- 6bN. Frank, J. Nugent, B. R. Shire, H. D. Pickford, P. Rabe, A. J. Sterling, T. Zarganes-Tzitzikas, T. Grimes, A. L. Thompson, R. C. Smith, C. J. Schofield, P. E. Brennan, F. Duarte, E. A. Anderson, Nature 2022, 611, 721–726;
- 6cT. Iida, J. Kanazawa, T. Matsunaga, K. Miyamoto, K. Hirano, M. Uchiyama, J. Am. Chem. Soc. 2022, 144, 21848–21852;
- 6dY. Zhang, W. Huang, R. K. Dhungana, A. Granados, S. Keess, M. Makvandi, G. A. Molander, J. Am. Chem. Soc. 2022, 144, 23685–23690;
- 6eT. Yu, J. Yang, Z. Wang, Z. Ding, M. Xu, J. Wen, L. Xu, P. Li, J. Am. Chem. Soc. 2023, 145, 4304–4310;
- 6fT. V. T. Nguyen, A. Bossonnet, M. D. Wodrich, J. Waser, J. Am. Chem. Soc. 2023, 145, 25411–25421; For aza-BCHeps, see:
- 6gJ. Zhang, J.-Y. Su, H. Zheng, H. Li, W.-P. Deng, Angew. Chem. Int. Ed. 2024, e202318476;
- 6hY. Liang, R. Nematswerani, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2024, e202402730;
- 6iZ. Lin, H. Ren, X. Lin, X. Yu, J. Zheng, J. Am. Chem. Soc. 2024, 146, 18565–18575; for a review, see:
- 6jJ.-J. Feng, Synlett 2024, DOI: 10.1055/a-2406-3243.
- 7
- 7aK. F. Biegasiewicz, J. R. Griffiths, G. P. Savage, J. Tsanaktsidis, R. Priefer, Chem. Rev. 2015, 115, 6719–6745;
- 7bM. P. Wiesenfeldt, J. A. Rossi-Ashton, I. B. Perry, J. Diesel, O. L. Garry, F. Bartels, S. C. Coote, X. Ma, C. S. Yeung, D. J. Bennett, D. W. C. MacMillan, Nature 2023, 618, 513–518.
- 8
- 8aD. Bandak, O. Babii, R. Vasiuta, I. V. Komarov, P. K. Mykhailiuk, Org. Lett. 2015, 17, 226–229;
- 8bR. C. Epplin, S. Paul, L. Herter, C. Salome, E. N. Hancock, J. F. Larrow, E. W. Baum, D. R. Dunstan, C. Ginsburg-Moraff, T. C. Fessard, M. K. Brown, Nat. Commun. 2022, 13, 6056;
- 8cV. V. Levterov, Y. Panasyuk, K. Sahun, O. Stashkevich, V. Badlo, O. Shablykin, I. Sadkova, L. Bortnichuk, O. Klymenko-Ulianov, Y. Holota, L. Lachmann, P. Borysko, K. Horbatok, I. Bodenchuk, Y. Bas, D. Dudenko, P. K. Mykhailiuk, Nat. Commun. 2023, 14, 5608;
- 8dJ.-Y. Son, S. Aikonen, N. Morgan, A. S. Harmata, J. J. Sabatini, R. C. Sausa, E. F. C. Byrd, D. H. Ess, R. S. Paton, C. R. J. Stephenson, J. Am. Chem. Soc. 2023, 145, 16355–16364;
- 8eE. Smith, K. D. Jones, L. O′Brien, S. P. Argent, C. Salome, Q. Lefebvre, A. Valery, M. Böcü, G. N. Newton, H. W. Lam, J. Am. Chem. Soc. 2023, 145, 16365–16373;
- 8fL. Yang, H. Wang, M. Lang, J. Wang, S. Peng, Org. Lett. 2024, 26, 4104–4110; for a review, see:
- 8gJ. Tsien, C. Hu, R. R. Merchant, T. Qin, Nat. Rev. Chem. 2024, 8, 605–627.
- 9J.-X. Zhao, Y.-X. Chang, C. He, B. J. Burke, M. R. Collins, M. D. Bel, J. Elleraas, G. M. Gallego, T. P. Montgomery, J. J. Mousseau, S. K. Nair, M. A. Perry, J. E. Spanglerc, J. C. Vantourout, P. S. Baran, Natl Acad. Sci. USA 2021, 118, e2108881118.
- 10For reviews on BCBs, see:
- 10aM. Golfmann, J. C. L. Walker, Commun. Chem. 2023, 6, 9;
- 10bC. B. Kelly, J. A. Milligan, L. J. Tilley, T. M. Sodano, Chem. Sci. 2022, 13, 11721–11737;
- 10cA. Fawcett, Pure Appl. Chem. 2020, 92, 751–765;
- 10dJ. Turkowska, J. Durka, D. Gryko, Chem. Commun. 2020, 56, 5718–5734;
- 10eM. A. A. Walczak, T. Krainz, P. Wipf, Acc. Chem. Res. 2015, 48, 1149–1158;
- 10fP. Bellotti, F. Glorius, J. Am. Chem. Soc. 2023, 145, 20716–20732;
- 10gS. J. Sujansky, X. Ma, Asian J. Org. Chem. 2024, e202400045.
- 11
- 11aV. V. Levterov, Y. Panasyuk, V. O. Pivnytska, P. K. Mykhailiuk, Angew. Chem. Int. Ed. 2020, 59, 7161–7167;
- 11bA. Denisenko, P. Garbuz, N. M. Voloshchuk, Y. Holota, G. Al-Maali, P. Borysko, P. K. Mykhailiuk, Nat. Chem. 2023, 15, 1155–1163;
- 11cD. Dibchak, M. Snisarenko, A. Mishuk, O. Shablykin, L. Bortnichuk, O. Klymenko-Ulianov, Y. Kheylik, I. V. Sadkova, H. S. Rzepa, P. K. Mykhailiuk, Angew. Chem. Int. Ed. 2023, 62, e202304246.
- 12
- 12aK. Dhake, K. J. Woelk, J. Becica, A. Un, S. E. Jenny, D. C. Leitch, Angew. Chem. Int. Ed. 2022, 61, e202204719;
- 12bY. Liang, F. Paulus, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2023, 62, e202305043;
- 12cY. Liang, R. Kleinmans, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2022, 144, 20207–20213;
- 12dB. D. Schwartz, A. P. Smyth, P. E. Nashar, M. G. Gardiner, L. R. Malins, Org. Lett. 2022, 24, 1268–1273;
- 12eM. Wang, Y. Huang, C. Li, P. Lu, Org. Chem. Front. 2022, 9, 2149–2153.
- 13During the peer review of our manuscript (initial version submitted to Angewandte Chemie on October 4, 2023), substantial advancements in the enantioselective cycloaddition reactions of BCBs were documented. See:
- 13aM. de Robichon, T. Kratz, F. Beyer, J. Zuber, C. Merten, T. Bach, J. Am. Chem. Soc. 2023, 145, 24466–24470;
- 13bQ. Fu, S. Cao, J. Wang, Xi. Lv, H. Wang, X. Zhao, Z. Jiang, J. Am. Chem. Soc. 2024, 146, 8372–8380;
- 13cJ.-L. Zhou, Y. Xiao, L. He, X.-Y. Gao, X.-C. Yang, W.-B. Wu, G. Wang, J. Zhang, J.-J. Feng, J. Am. Chem. Soc. 2024, 146, 19621–19628;
- 13dX. Wang, R. Gao, X. Li, J. Am. Chem. Soc. 2024, 146, 21069–21077;
- 13eY. Xiao, F. Wu, L. Tang, X. Zhang, M. Wei, G. Wang, J.-J. Feng, Angew. Chem. Int. Ed. 2024, e202408578;
- 13fX.-Y. Gao, L. Tang, X. Zhang, J.-J. Feng, Chem. Sci. 2024, 15, 13942–13948; For catalytic asymmetric ring-openings of BCBs, see:
- 13gH.-C. Shen, M. V. Popescu, Z.-S. Wang, L. de Lescure, A. Noble, R. S. Paton, V. K. Aggarwal, J. Am. Chem. Soc. 2023, 145, 16508–16516;
- 13hS.-L. Lin, Y.-H. Chen, H.-H. Liu, S.-H. Xiang, B. Tan, J. Am. Chem. Soc. 2023, 145, 21152–21158.
- 14
- 14aE. A. Bell, M. Y. Qureshi, R. J. Pryce, D. H. Janzen, P. Lemke, J. Clardy, J. Am. Chem. Soc. 1980, 102, 1409–1412;
- 14bG. C. Kite, H. Ireland, Phytochemistry 2002, 59, 163–168;
- 14cB. Cox, V. Zdorichenko, P. B. Cox, K. I. Booker-Milburn, R. Paumier, L. D. Elliott, M. Robertson-Ralph, G. Bloomfield, ACS Med. Chem. Lett. 2020, 11, 1185–1190;
- 14dV. V. Levterov, O. Michurin, P. O. Borysko, S. Zozulya, I. V. Sadkova, A. A. Tolmachev, P. K. Mykhailiuk, J. Org. Chem. 2018, 83, 14350–14361.
- 15
- 15aB. A. Wright, A. Matviitsuk, M. J. Black, P. García-Reynaga, L. E. Hanna, A. T. Herrmann, M. K. Ameriks, R. Sarpong, T. P. Lebold, J. Am. Chem. Soc. 2023, 145, 10960–10966;
- 15bL. D. Elliott, K. I. Booker-Milburn, Org. Lett. 2019, 21, 1463–1466.
- 16
- 16aT. Rammeloo, C. V. Stevens, Chem. Commun. 2002, 250–251;
- 16bC. Lescop, L. Mevellec, F. Huet, J. Org. Chem. 2001, 66, 4187–4193;
- 16cC. Stevens, N. De Kimpe, J. Org. Chem. 1996, 61, 2174–2178;
- 16dH. Li, A. Li, X. Chen, K. Liang, Y. Shen, Q. Liang, K. Xu, D. G. Shore, E. Villemure, M. Siu, M. P. Huestis, Synlett. 2016, 27, 2251–2253;
- 16eG. R. Krow, Y. B. Lee, W. S. Lester, H. Christian, D. A. Shaw, J. Yuan, J. Org. Chem. 1998, 63, 8558–8560;
- 16fG. R. Krow, S. B. Herzon, G. Lin, F. Qiu, P. E. Sonnet, Org. Lett. 2002, 4, 3151–3154.
- 17
- 17aM. C. Pirrung, Tetrahedron Lett. 1980, 21, 4577–4578;
- 17bP. Hughes, M. Martin, J. Clardy, Tetrahedron Lett. 1980, 21, 4579–4580;
- 17cD. W. Piotrowski, Synlett. 1999, 7, 1091–1093;
10.1055/s-1999-2775 Google Scholar
- 17dL. D. Elliott, K. I. Booker-Milburn, A. J. J. Lennox, Org. Process Res. Dev. 2021, 25, 1943–1949.
- 18
- 18aL. Tang, Q.-N. Huang, F. Wu, Y. Xiao, J.-L. Zhou, T.-T. Xu, W.-B. Wu, S. Qu, J.-J. Feng, Chem. Sci. 2023, 14, 9696–9703;
- 18bY. Xiao, T.-T. Xu, J.-L. Zhou, F. Wu, L. Tang, R.-Y. Liu, W.-B. Wu, J.-J. Feng, Chem. Sci. 2023, 14, 13060–13066;
- 18cC.-Z. Zhu, J.-J. Feng, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 1351–1355; Angew. Chem. 2017, 129, 1371–1375;
- 18dJ.-J. Feng, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 8211–8215; Angew. Chem. 2019, 131, 8295–8299.
- 19
- 19aV. Pirenne, B. Muriel, J. Waser, Chem. Rev. 2021, 121, 227–263;
- 19bL. Wang, Y. Tang, Isr. J. Chem. 2016, 56, 463–475;
- 19cT. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed. 2014, 53, 5504–5523;
- 19dY. Xia, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2021, 60, 9192–9204;
- 19eA. T. Parsons, A. G. Smith, A. J. Neel, J. S. Johnson, J. Am. Chem. Soc. 2010, 132, 9688–9692;
- 19fH.-U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151–1196.
- 20S. Kobayashi, Y. Mori, J. S. Fossey, M. M. Salter, Chem. Rev. 2011, 111, 2626–2704.
- 21
- 21aK. W. Quasdorf, L. E. Overman, Nature 2014, 516, 181–191;
- 21bJ. Feng, M. Holmes, M. J. Krische, Chem. Rev. 2017, 117, 12564–12580;
- 21cD. Pierrot, I. Marek, Angew. Chem. Int. Ed. 2020, 59, 36–49;
- 21dF. Zhou, L. Zhu, B.-W. Pan, Y. Shi, Y.-L. Liu, J. Zhou, Chem. Sci. 2020, 11, 9341–9365.
- 22D. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt, R. Xu, J. Am. Chem. Soc. 2007, 129, 10029–10041.
- 23S. Liao, X. L. Sun, Y. Tang, Acc. Chem. Res. 2014, 47, 2260–2272.
- 24CCDC 2292932 (3cg).
- 25
- 25aC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 25bA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 26
- 26aS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 26bS. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 27
- 27aF. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065;
- 27bF. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 28J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027–2094.
- 29
- 29aS. O'Reilly, M. Aylward, C. Keogh-Hansen, B. Fitzpatrick, H. A. McManus, H. Müller-Bunz, P. J. Guiry, J. Org. Chem. 2015, 80, 10177–10186;
- 29bS. F. Lu, D. M. Du, J. Xu, S. W. Zhang, J. Am. Chem. Soc. 2006, 128, 7418–7419.
- 30H. Liu, J. Xu, D. M. Du, Org. Lett. 2007, 9, 4725–4728.
- 31F. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070–10086.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.