Upgrading Electrolyte Antioxidant Chemistry by Constructing Potential Scaling Relationship
Ruhong Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 China
These authors contributed equally to this paper.
Search for more papers by this authorZunchun Wu
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this paper.
Search for more papers by this authorShuoqing Zhang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJia Liu
State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLiwu Fan
State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorTao Deng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
Search for more papers by this authorLixin Chen
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou, 310013 China
Search for more papers by this authorCorresponding Author
Xiulin Fan
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorRuhong Li
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215 China
These authors contributed equally to this paper.
Search for more papers by this authorZunchun Wu
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this paper.
Search for more papers by this authorShuoqing Zhang
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJia Liu
State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLiwu Fan
State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorTao Deng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
Search for more papers by this authorLixin Chen
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou, 310013 China
Search for more papers by this authorCorresponding Author
Xiulin Fan
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Rational design of advanced electrolytes to improve the high-voltage capability has been attracting wide attention as one critical solution to enable next-generation high-energy-density batteries. However, the limited understanding of electrolyte antioxidant chemistry as well as the lack of valid quantization approaches have resulted in knowledge gap, which hinders the formulation of new electrolytes. Herein, we construct a standard curve based on representative solvation structures to quantify the oxidation stability of ether-based electrolytes, which reveals the linear correlation between the oxidation potential and the atomic charge of the least oxidation-resistant solvent. Dictated by the regularity between solvation composition and oxidation potential, a (Trifluoromethyl)cyclohexane-based localized high-concentration electrolyte dominated by anion-less solvation structures was designed to optimize the cycling performance of 4.5 V 30 μm-Li||3.8 mAh cm−2-LiCoO2 batteries, which maintained 80 % capacity retention even after 440 cycles. The consistency of experimental and computational results validates the proposed principles, offering a fundamental guideline to evaluate and design aggressive electrochemical systems.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406122-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nat. Energy 2019, 4, 180–186;
- 1bM. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433–11456;
- 1cK. Liu, B. Kong, W. Liu, Y. Sun, M.-S. Song, J. Chen, Y. Liu, D. Lin, A. Pei, Y. Cui, Joule 2018, 2, 1857–1865.
- 2J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587–603.
- 3K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 4
- 4aS.-K. Jeong, H.-Y. Seo, D.-H. Kim, H.-K. Han, J.-G. Kim, Y. B. Lee, Y. Iriyama, T. Abe, Z. Ogumi, Electrochem. Soc. Interface 2008, 10, 635–638;
- 4bY. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280.
- 5
- 5aC. Zhang, S. Gu, D. Zhang, J. Ma, H. Zheng, M. Zheng, R. Lv, K. Yu, J. Wu, X. Wang, Q.-H. Yang, F. Kang, W. Lv, Energy Storage Mater. 2022, 52, 355–364;
- 5bM. Liu, X. Li, B. Zhai, Z. Zeng, W. Hu, S. Lei, H. Zhang, S. Cheng, J. Xie, Batteries & Supercaps 2022, 5;
- 5cX. Wang, W. He, H. Xue, D. Zhang, J. Wang, L. Wang, J. Li, Sustain. Energy Fuels 2022, 6, 1281–1288.
- 6
- 6aG. M. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee, Y. Shirley Meng, Y. Shao-Horn, B. M. Gallant, Nat. Energy 2021, 6, 951–960;
- 6bS. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater. 2018, 30, 1706102.
- 7
- 7aM. Takeuchi, N. Matubayasi, Y. Kameda, B. Minofar, S. Ishiguro, Y. Umebayashi, J. Phys. Chem. B 2012, 116, 6476–6487;
- 7bY. Ugata, R. Tatara, K. Ueno, K. Dokko, M. Watanabe, J. Chem. Phys. 2020, 152, 104502;
- 7cK. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121–13129;
- 7dY.-F. Tian, S.-J. Tan, Z.-Y. Lu, D.-X. Xu, H.-X. Chen, C.-H. Zhang, X.-S. Zhang, G. Li, Y.-M. Zhao, W.-P. Chen, Q. Xu, R. Wen, J. Zhang, Y.-G. Guo, Angew. Chem. Int. Ed. 2023, 62, e202305988;
- 7eX. Li, Y. Pan, Y. Liu, Y. Jie, S. Chen, S. Wang, Z. He, X. Ren, T. Cheng, R. Cao, S. Jiao, Carbon Neutrality 2023, 2, 34;
- 7fS. Wang, J. Zhang, W. Hua, L. Wen, G. Tang, X. Wang, C. Ma, W. Chen, Carbon Neutrality 2023, 2, 20.
- 8
- 8aJ. B. Goodenough, Y. Kim, J. Power Sources 2011, 196, 6688–6694;
- 8bX. Fan, C. Wang, Chem. Soc. Rev. 2021, 50, 10486–10566.
- 9
- 9aQ. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Adv. Mater. 2019, 31, e1902029;
- 9bJ. B. Goodenough, Energy Environ. Sci. 2014, 7, 14–18;
- 9cH.-D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim, H. Gwon, Y. Ko, M. Lee, K. Cho, K. Kang, Nat. Energy 2016, 1.
- 10
- 10aP. Peljo, H. H. Girault, Energy Environ. Sci. 2018, 11, 2306–2309;
- 10bJ. Xu, Nano-Micro Lett. 2022, 14, 166;
- 10cS. Lin, Y. Lin, B. He, B. Pu, Y. Ren, G. Wang, Y. Luo, S. Shi, Adv. Energy Mater. 2022.
- 11
- 11aT. Li, Y. Li, Y. Sun, Z. Qian, R. Wang, ACS Materials Lett. 2021, 3, 838–844;
- 11bX. Ren, L. Zou, S. Jiao, D. Mei, M. H. Engelhard, Q. Li, H. Lee, C. Niu, B. D. Adams, C. Wang, J. Liu, J.-G. Zhang, W. Xu, ACS Energy Lett. 2019, 4, 896–902.
- 12
- 12aX. Ren, S. Chen, H. Lee, D. Mei, M. H. Engelhard, S. D. Burton, W. Zhao, J. Zheng, Q. Li, M. S. Ding, M. Schroeder, J. Alvarado, K. Xu, Y. S. Meng, J. Liu, J.-G. Zhang, W. Xu, Chem 2018, 4, 1877–1892;
- 12bY. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039–5046.
- 13
- 13aY. Huang, R. Li, S. Weng, H. Zhang, C. Zhu, D. Lu, C. Sun, X. Huang, T. Deng, L. Fan, L. Chen, X. Wang, X. Fan, Energy Environ. Sci. 2022, 15, 4349–4361;
- 13bO. Borodin, W. Behl, T. R. Jow, J. Phys. Chem. C 2013, 117, 8661–8682;
- 13cY. Wang, L. Xing, W. Li, D. Bedrov, J. Phys. Chem. Lett. 2013, 4, 3992–3999.
- 14
- 14aE. R. Davidson, S. J. T. Chakravorty, Theor. Chim. Acta 1992, 83, 319–330;
- 14bP. Bultinck, C. Van Alsenoy, P. W. Ayers, R. J. T. J. Carbó-Dorca, J. Chem. Phys. 2007, 126, 144111.
- 15
- 15aX. Cao, L. Zou, B. E. Matthews, L. Zhang, X. He, X. Ren, M. H. Engelhard, S. D. Burton, P. Z. El-Khoury, H.-S. Lim, C. Niu, H. Lee, C. Wang, B. W. Arey, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Energy Storage Mater. 2021, 34, 76–84;
- 15bX. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule 2019, 3, 1662–1676;
- 15cC. Zhu, C. Sun, R. Li, S. Weng, L. Fan, X. Wang, L. Chen, M. Noked, X. Fan, ACS Energy Lett. 2022, 1338–1347.
- 16J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 12032.
- 17
- 17aZ. Wu, R. Li, S. Zhang, L. lv, T. Deng, H. Zhang, R. Zhang, J. Liu, S. Ding, L. Fan, L. Chen, X. Fan, Chem 2022;
- 17bM. Humenik Jr, W. D. Kingery, J. Am. Ceram. Soc. 1954, 37, 18–23.
- 18T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, L. Lai, J. Chem. Inf. Model. 2007, 47, 2140–2148.
- 19X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol. 2018, 13, 715–722.
- 20M. Mao, B. Huang, Q. Li, C. Wang, Y.-B. He, F. Kang, Nano Energy 2020, 78.
- 21X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang, F. Ren, W. Zhang, Y. Liao, W. Zhao, Z. Zhang, N. Xu, W. Yang, Y. Yang, Adv. Funct. Mater. 2020, 30.
- 22P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202202731.
- 23H. Zhang, Z. Zeng, R. He, Y. Wu, W. Hu, S. Lei, M. Liu, S. Cheng, J. Xie, Energy Storage Mater. 2022, 48, 393–402.
- 24X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao, X. Zhang, H. Jia, M. H. Engelhard, B. E. Matthews, H. Wu, H. Lee, C. Niu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Proc. Nat. Acad. Sci. 2020, 117, 28603–28613.
- 25X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai, X. Liu, Z. Wang, H. Zheng, Y. Huang, ACS Energy Lett. 2021, 6, 2054–2063.
- 26
- 26aJ. Chen, Q. Li, T. P. Pollard, X. Fan, O. Borodin, C. Wang, Mater. Today 2020, 39, 118–126;
- 26bM. S. Kim, Z. Zhang, P. E. Rudnicki, Z. Yu, J. Wang, H. Wang, S. T. Oyakhire, Y. Chen, S. C. Kim, W. Zhang, D. T. Boyle, X. Kong, R. Xu, Z. Huang, W. Huang, S. F. Bent, L. W. Wang, J. Qin, Z. Bao, Y. Cui, Nat. Mater. 2022, 21, 445–454.
- 27G. M. Hobold, K.-H. Kim, B. M. Gallant, Energy Environ. Sci. 2023, 16, 2247–2261.
- 28
- 28aQ.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song, J. Xie, L.-P. Hou, M.-Y. Zhou, X. Chen, B.-Q. Li, R. Wen, H.-J. Peng, Q. Zhang, J.-Q. Huang, Nat. Energy 2023, 8, 725–735;
- 28bZ. Zhang, S. Said, K. Smith, R. Jervis, C. A. Howard, P. R. Shearing, D. J. L. Brett, T. S. Miller, Adv. Energy Mater. 2021, 11, 2101518.
- 29
- 29aZ. P. Jiang, Z. Q. Zeng, H. Zhang, L. Yang, W. Hu, X. M. Liang, J. W. Feng, C. Yu, S. J. Cheng, J. Xie, iScience 2022, 25;
- 29bW. J. Xue, R. Gao, Z. Shi, X. H. Xiao, W. X. Zhang, Y. R. Zhang, Y. G. Zhu, I. Waluyo, Y. Li, M. R. Hill, Z. Zhu, S. Li, O. Kuznetsov, Y. M. Zhang, W. K. Lee, A. Hunt, A. Harutyunyan, Y. Shao-Horn, J. A. Johnson, J. Li, Energy Environ. Sci. 2021, 14, 6030–6040;
- 29cS. Y. Li, W. D. Zhang, Q. Wu, L. Fan, X. Y. Wang, X. Wang, Z. Y. Shen, Y. He, Y. Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 14935–14941;
- 29dY. Zheng, W. Fang, H. Zheng, Y. Su, X. Liang, C. H. Chen, H. F. Xiang, J. Electrochem. Soc. 2019, 166, A3222–A3227;
- 29eJ. X. Yang, X. Liu, Y. A. Wang, X. W. Zhou, L. T. Weng, Y. Z. Liu, Y. Ren, C. Zhao, M. Dahbi, J. Alami, D. Abd Ei-Hady, G. L. Xu, K. Amine, M. H. Shao, Adv. Energy Mater. 2021, 11;
- 29fC. X. Miao, S. H. Qi, K. Liang, Y. L. Qi, J. D. Huang, M. G. Wu, H. S. Zhao, J. D. Liu, Y. R. Ren, J. M. Ma, J. Energy Chem. 2021, 63, 566–573.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.