Constructing Photoactivatable Protein with Genetically Encoded Photocaged Glutamic Acid
Xiaochen Yang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLei Zhao
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYing Wang
School of Life Sciences, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanli Ji
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Xun-Cheng Su
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jun-An Ma
Department of Chemistry, Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Weimin Xuan
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
School of Life Sciences, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXiaochen Yang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLei Zhao
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYing Wang
School of Life Sciences, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYanli Ji
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Xun-Cheng Su
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jun-An Ma
Department of Chemistry, Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Weimin Xuan
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
School of Life Sciences, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorAbstract
Genetically replacing an essential residue with the corresponding photocaged analogues via genetic code expansion (GCE) constitutes a useful and unique strategy to directly and effectively generate photoactivatable proteins. However, the application of this strategy is severely hampered by the limited number of encoded photocaged proteinogenic amino acids. Herein, we report the genetic incorporation of photocaged glutamic acid analogues in E. coli and mammalian cells and demonstrate their use in constructing photoactivatable variants of various fluorescent proteins and SpyCatcher. We believe genetically encoded photocaged Glu would significantly promote the design and application of photoactivatable proteins in many areas.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202308472-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119–191;
- 1bA. Losi, K. H. Gardner, A. Moeglich, Chem. Rev. 2018, 118, 10659–10709;
- 1cR. Lucchi, J. Bentanachs, B. Oller-Salvia, ACS Cent. Sci. 2021, 7, 724–738;
- 1dA. E. Mangubat-Medina, Z. T. Ball, Chem. Soc. Rev. 2021, 50, 10403–10421;
- 1eN. Ankenbruck, T. Courtney, Y. Naro, A. Deiters, Angew. Chem. Int. Ed. 2018, 57, 2768–2798.
- 2
- 2aD. D. Young, P. G. Schultz, ACS Chem. Biol. 2018, 13, 854–870;
- 2bJ. W. Chin, Nature 2017, 550, 53–60.
- 3T. Courtney, A. Deiters, Curr. Opin. Chem. Biol. 2018, 46, 99–107.
- 4
- 4aN. Wu, A. Deiters, T. A. Cropp, D. King, P. G. Schultz, J. Am. Chem. Soc. 2004, 126, 14306–14307;
- 4bJ. Y. Kang, D. Kawaguchi, I. Coin, Z. Xiang, D. D. M. O'Leary, P. A. Slesinger, L. Wang, Neuron 2013, 80, 358–370;
- 4cD. P. Nguyen, M. Mahesh, S. J. Elsasser, S. M. Hancock, C. Uttamapinant, J. W. Chin, J. Am. Chem. Soc. 2014, 136, 2240–2243;
- 4dW. Ren, A. Ji, H. W. Ai, J. Am. Chem. Soc. 2015, 137, 2155–2158.
- 5
- 5aA. Deiters, D. Groff, Y. H. Ryu, J. M. Xie, P. G. Schultz, Angew. Chem. Int. Ed. 2006, 45, 2728–2731;
- 5bE. Arbely, J. Torres-Kolbus, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2012, 134, 11912–11915;
- 5cJ. Luo, J. Torres-Kolbus, J. Liu, A. Deiters, ChemBioChem 2017, 18, 1442–1447.
- 6E. A. Lemke, D. Summerer, B. H. Geierstanger, S. M. Brittain, P. G. Schultz, Nat. Chem. Biol. 2007, 3, 769–772.
- 7
- 7aP. R. Chen, D. Groff, J. T. Guo, W. J. Ou, S. Cellitti, B. H. Geierstanger, P. G. Schultz, Angew. Chem. Int. Ed. 2009, 48, 4052–4055;
- 7bA. Gautier, D. P. Nguyen, H. Lusic, W. A. An, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2010, 132, 4086–4088;
- 7cJ. Luo, R. Uprety, Y. Naro, C. J. Chou, D. P. Nguyen, J. W. Chin, A. Deiters, J. Am. Chem. Soc. 2014, 136, 15551–15558.
- 8S. B. Erickson, R. Mukherjee, R. E. Kelemen, C. J. J. Wrobel, X. F. Cao, A. Chatterjee, Angew. Chem. Int. Ed. 2017, 56, 4234–4237.
- 9
- 9aC. J. Chou, D. D. Young, A. Deiters, Angew. Chem. Int. Ed. 2009, 48, 5950–5953;
- 9bJ. Hemphill, C. J. Chou, J. W. Chin, A. Deiters, J. Am. Chem. Soc. 2013, 135, 13433–13439.
- 10T. Bridge, S. A. Shaikh, P. Thomas, J. Botta, P. J. McCormick, A. Sachdeva, Angew. Chem. Int. Ed. 2019, 58, 17986–17993.
- 11
- 11aB. Jedlitzke, Z. Yilmaz, W. Dorner, H. D. Mootz, Angew. Chem. Int. Ed. 2020, 59, 1506–1510;
- 11bE. F. Joest, C. Winter, J. S. Wesalo, A. Deiters, R. Tampé, Chem. Sci. 2021, 12, 5787–5795.
- 12E. S. Khan, S. Sankaran, J. I. Paez, C. Muth, M. K. L. Han, A. del Campo, Adv. Sci. 2019, 6, 1801982.
- 13S. Palei, B. Buchmuller, J. Wolffgramm, A. Munoz-Lopez, S. Jung, P. Czodrowski, D. Summerer, J. Am. Chem. Soc. 2020, 142, 7289–7294.
- 14J. Wolffgramm, B. Buchmuller, S. Palei, Á. Muñoz-López, J. Kanne, P. Janning, M. R. Schweiger, D. Summerer, Angew. Chem. Int. Ed. 2021, 60, 13507–13512.
- 15B. J. Wilkins, S. Marionni, D. D. Young, J. Liu, Y. Wang, M. L. Di Salvo, A. Deiters, T. A. Cropp, Biochemistry 2010, 49, 1557–1559.
- 16J. Liu, R. Cheng, N. Van Eps, N. Wang, T. Morizumi, W.-L. Ou, P. C. Klauser, S. Rozovsky, O. P. Ernst, L. Wang, J. Am. Chem. Soc. 2020, 142, 17057–17068.
- 17D. Groff, P. R. Chen, F. B. Peters, P. G. Schultz, ChemBioChem 2010, 11, 1066–1068.
- 18M. Hauf, F. Richter, T. Schneider, T. Faidt, B. M. Martins, T. Baumann, P. Durkin, H. Dobbek, K. Jacobs, A. Möglich, N. Budisa, ChemBioChem 2017, 18, 1819–1823.
- 19S. Mondal, S. Wang, Y. Zheng, S. Sen, A. Chatterjee, P. R. Thompson, Nat. Commun. 2021, 12, 45.
- 20R. Uprety, J. Luo, J. Liu, Y. Naro, S. Samanta, A. Deiters, ChemBioChem 2014, 15, 1793–1799.
- 21
- 21aJ. C. Peeler, J. A. Falco, R. E. Kelemen, M. Abo, B. V. Chartier, L. C. Edinger, J. Chen, A. Chatterjee, E. Weerapana, ACS Chem. Biol. 2020, 15, 1535–1540;
- 21bA. P. Welegedara, L. A. Adams, T. Huber, B. Graham, G. Otting, Bioconjugate Chem. 2018, 29, 2257–2264;
- 21cR. Rakauskaitė, G. Urbanavičiūtė, A. Rukšėnaitė, Z. Liutkevičiūtė, R. Juškėnas, V. Masevičius, S. Klimašauskas, Chem. Commun. 2015, 51, 8245–8248.
- 22J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G. Zhang, C. Wang, P. R. Chen, Nature 2019, 569, 509–513.
- 23G. J. Bartlett, C. T. Porter, N. Borkakoti, J. M. Thornton, J. Mol. Biol. 2002, 324, 105–121.
- 24X. Yang, H. Miao, R. Xiao, L. Wang, Y. Zhao, Q. Wu, Y. Ji, J. Du, H. Qin, W. Xuan, Chem. Sci. 2021, 12, 9778–9785.
- 25K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, V. V. Verkhusha, Nat. Rev. Mol. Cell Biol. 2005, 6, 885–890.
- 26D. P. Barondeau, C. D. Putnam, C. J. Kassmann, J. A. Tainer, E. D. Getzoff, Proc. Natl. Acad. Sci. USA 2003, 100, 12111–12116.
- 27D. Groff, F. Wang, S. Jockusch, N. J. Turro, P. G. Schultz, Angew. Chem. Int. Ed. 2010, 49, 7677–7679.
- 28
- 28aB. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek, V. T. Moy, M. Howarth, Proc. Natl. Acad. Sci. USA 2012, 109, E690–E697;
- 28bA. H. Keeble, A. Banerjee, M. P. Ferla, S. C. Reddington, I. N. A. K. Anuar, M. Howarth, Angew. Chem. Int. Ed. 2017, 56, 16521–16525;
- 28cA. H. Keeble, P. Turkki, S. Stokes, I. N. A. Khairil Anuar, R. Rahikainen, V. P. Hytönen, M. Howarth, Proc. Natl. Acad. Sci. USA 2019, 116, 26523–26533.
- 29E. J. Hartzell, J. Terr, W. Chen, J. Am. Chem. Soc. 2021, 143, 8572–8577.
- 30C. N. Bedbrook, M. Kato, S. Ravindra Kumar, A. Lakshmanan, R. D. Nath, F. Sun, P. W. Sternberg, F. H. Arnold, V. Gradinaru, Chem. Biol. 2015, 22, 1108–1121.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.