High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator
Qiu-Chen Peng
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Yu-Bing Si
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJia-Wang Yuan
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorQi Yang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZi-Ying Gao
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Yuan-Yuan Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Zhao-Yang Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Dr. Kai Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Prof. Shuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Ben Zhong Tang
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172 China
Search for more papers by this authorQiu-Chen Peng
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Yu-Bing Si
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorJia-Wang Yuan
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorQi Yang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZi-Ying Gao
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Yuan-Yuan Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDr. Zhao-Yang Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Dr. Kai Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Prof. Shuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorProf. Ben Zhong Tang
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172 China
Search for more papers by this authorAbstract
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal–organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm−1.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202308194-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
ange202308194-sup-0001-Video_1.wmv41.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Chen, J. Song, X. Chen, H. Yang, Chem. Soc. Rev. 2019, 48, 3073–3101;
- 1bY. C. Kim, K. H. Kim, D. Y. Son, D. N. Jeong, J. Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, N. G. Park, Nature 2017, 550, 87–91;
- 1cH. Liang, Z. Hong, S. Li, X. Song, D. Zhang, Q. Chen, J. Li, H. Yang, Adv. Funct. Mater. 2021, 31, 2006353;
- 1dR. Yu, S. Fan, Science 2022, 375, 822–823.
- 2
- 2aX. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 2021, 590, 410–415;
- 2bX. Wang, H. Shi, H. Ma, W. Ye, L. Song, J. Zan, X. Yao, X. Ou, G. Yang, Z. Zhao, M. Singh, C. Lin, H. Wang, W. Jia, Q. Wang, J. Zhi, C. Dong, X. Jiang, Y. Tang, X. Xie, Y. Yang, J. Wang, Q. Chen, Y. Wang, H. Yang, G. Zhang, Z. An, X. Liu, W. Huang, Nat. Photonics 2021, 15, 187–192;
- 2cH. Wu, Y. Ge, G. Niu, J. Tang, Matter 2021, 4, 144–163;
- 2dY. Zhou, J. Chen, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2021, 6, 739–768.
- 3
- 3aP. Büchele, M. Richter, S. F. Tedde, G. J. Matt, G. N. Ankah, R. Fischer, M. Biele, W. Metzger, S. Lilliu, O. Bikondoa, J. E. Macdonald, C. J. Brabec, T. Kraus, U. Lemmer, O. Schmidt, Nat. Photonics 2015, 9, 843–848;
- 3bC. Dong, X. Wang, W. Gong, W. Ma, M. Zhang, J. Li, Y. Zhang, Z. Zhou, Z. Yang, S. Qu, Q. Wang, Z. Zhao, G. Yang, A. Lv, H. Ma, Q. Chen, H. Shi, Y. M. Yang, Z. An, Angew. Chem. Int. Ed. 2021, 60, 27195–27200;
- 3cX. Li, Y. He, M. Kepenekian, P. Guo, W. Ke, J. Even, C. Katan, C. C. Stoumpos, R. D. Schaller, M. G. Kanatzidis, J. Am. Chem. Soc. 2020, 142, 6625–6637;
- 3dS. Shrestha, R. Fischer, G. J. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. Chen, S. F. Tedde, O. Schmidt, R. Hock, M. Rührig, M. Göken, W. Heiss, G. Anton, C. J. Brabec, Nat. Photonics 2017, 11, 436–440.
- 4
- 4aM. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208440;
- 4bJ. X. Wang, L. Gutiérrez-Arzaluz, X. Wang, M. Almalki, J. Yin, J. Czaban-Jóźwiak, O. Shekhah, Y. Zhang, O. M. Bakr, M. Eddaoudi, O. F. Mohammed, Matter 2022, 5, 253–265;
- 4cY. Wang, X. Yin, W. Liu, J. Xie, J. Chen, M. A. Silver, D. Sheng, L. Chen, J. Diwu, N. Liu, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, Angew. Chem. Int. Ed. 2018, 57, 7883–7887.
- 5
- 5aA. M. Almushaikeh, H. Wang, L. Gutierrez-Arzaluz, J. Yin, R. W. Huang, O. M. Bakr, O. F. Mohammed, Chem. Commun. 2023, 59, 4447–4450;
- 5bT. He, Y. Zhou, P. Yuan, J. Yin, L. Gutiérrez-Arzaluz, S. Chen, J. X. Wang, S. Thomas, H. N. Alshareef, O. M. Bakr, O. F. Mohammed, ACS Energy Lett. 2023, 8, 1362–1370;
- 5cQ. Hu, C. Zhang, X. Wu, G. Liang, L. Wang, X. Niu, Z. Wang, W. D. Si, Y. Han, R. Huang, J. Xiao, D. Sun, Angew. Chem. Int. Ed. 2023, 62, e202217784;
- 5dK. Kirakci, K. Fejfarova, J. Martincik, M. Nikl, K. Lang, Inorg. Chem. 2017, 56, 4609–4614;
- 5eX. Liu, R. Li, X. Xu, Y. Jiang, W. Zhu, Y. Yao, F. Li, X. Tao, S. Liu, W. Huang, Q. Zhao, Adv. Mater. 2023, 35, 2206741;
- 5fH. Wang, J. X. Wang, X. Song, T. He, Y. Zhou, O. Shekhah, L. Gutiérrez-Arzaluz, M. Bayindir, M. Eddaoudi, O. M. Bakr, O. F. Mohammed, ACS Cent. Sci. 2023, 9, 668–674;
- 5gW. Zhao, Y. Wang, Y. Guo, Y. D. Suh, X. Liu, Adv. Sci. 2023, 10, 2205526.
- 6
- 6aJ. J. Wang, C. Chen, W. G. Chen, J. S. Yao, J. N. Yang, K. H. Wang, Y. C. Yin, M. M. Yao, L. Z. Feng, C. Ma, F. J. Fan, H. B. Yao, J. Am. Chem. Soc. 2020, 142, 3686–3690;
- 6bJ. J. Wang, H. T. Zhou, J. N. Yang, L. Z. Feng, J. S. Yao, K. H. Song, M. M. Zhou, S. Jin, G. Zhang, H. B. Yao, J. Am. Chem. Soc. 2021, 143, 10860–10864.
- 7Y. Y. Liu, X. Zhang, K. Li, Q. C. Peng, Y. J. Qin, H. W. Hou, S. Q. Zang, B. Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 22417–22423.
- 8Y. Jin, Q. C. Peng, J. W. Xie, K. Li, S. Q. Zang, Angew. Chem. Int. Ed. 2023, 62, e202301000.
- 9C. W. E. van Eijk, Phys. Med. Biol. 2002, 47, R85–R106.
- 10H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H. H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photonics 2016, 10, 333–339.
- 11
- 11aW. Ma, Y. Su, Q. Zhang, C. Deng, L. Pasquali, W. Zhu, Y. Tian, P. Ran, Z. Chen, G. Yang, G. Liang, T. Liu, H. Zhu, P. Huang, H. Zhong, K. Wang, S. Peng, J. Xia, H. Liu, X. Liu, Y. M. Yang, Nat. Mater. 2022, 21, 210–216;
- 11bX. Wang, W. Sun, H. Shi, H. Ma, G. Niu, Y. Li, J. Zhi, X. Yao, Z. Song, L. Chen, S. Li, G. Yang, Z. Zhou, Y. He, S. Qu, M. Wu, Z. Zhao, C. Yin, C. Lin, J. Gao, Q. Li, X. Zhen, L. Li, X. Chen, X. Liu, Z. An, H. Chen, W. Huang, Nat. Commun. 2022, 13, 5091;
- 11cC. Liang, S. Zhang, L. Cheng, J. Xie, F. Zhai, Y. He, Y. Wang, Z. Chai, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 11856–11860;
- 11dH. Liu, H. Qin, N. Shen, S. Yan, Y. Wang, X. Yin, X. Chen, C. Zhang, X. Dai, R. Zhou, X. Ouyang, Z. Chai, S. Wang, Angew. Chem. Int. Ed. 2020, 59, 15209–15214;
- 11eQ. C. Peng, Y. B. Si, Z. Y. Wang, S. H. Dai, Q. S. Chen, K. Li, S. Q. Zang, ACS Cent. Sci. 2023, https://doi.org/10.1021/acscentsci.3c00563.
- 12Z. Zeng, B. Huang, X. Wang, L. Lu, Q. Lu, M. Sun, T. Wu, T. Ma, J. Xu, Y. Xu, S. Wang, Y. Du, C. H. Yan, Adv. Mater. 2020, 32, 2004506.
- 13S. Xu, Q. Yang, Y. Wan, R. Chen, S. Wang, Y. Si, B. Yang, D. Liu, C. Zheng, W. Huang, J. Mater. Chem. C 2019, 7, 9523–9530.
- 14
- 14aZ. Han, Y. Si, X. Y. Dong, J. H. Hu, C. Zhang, X. H. Zhao, J. W. Yuan, Y. Wang, S. Q. Zang, J. Am. Chem. Soc. 2023, 145, 6166–6176;
- 14bQ. Peng, Z. Shuai, Aggregate 2021, 2, e91.
- 15
- 15aY. Lv, Z. Xiong, Z. Yao, Y. Yang, S. Xiang, Z. Zhang, Y. S. Zhao, J. Am. Chem. Soc. 2019, 141, 19959–19963;
- 15bH. Q. Yin, X. Y. Wang, X. B. Yin, J. Am. Chem. Soc. 2019, 141, 15166–15173;
- 15cZ. H. Zhu, C. Bi, H. H. Zou, G. Feng, S. Xu, B. Z. Tang, Adv. Sci. 2022, 9, 2200850;
- 15dZ. H. Zhu, Z. Ni, H. H. Zou, G. Feng, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2106925.
- 16
- 16aS. Cai, X. Yao, H. Ma, H. Shi, Z. An, Aggregate 2023, e320;
- 16bQ. C. Peng, X. M. Luo, Y. J. Qin, T. Wang, B. Bai, X. L. Wei, K. Li, S. Q. Zang, CCS Chem. 2022, 4, 3686–3692.
- 17
- 17aX. H. Wu, P. Luo, Z. Wei, Y. Y. Li, R. W. Huang, X. Y. Dong, K. Li, S. Q. Zang, B. Z. Tang, Adv. Sci. 2019, 6, 1801304;
- 17bX. H. Wu, Z. Wei, B. J. Yan, R. W. Huang, Y.-Y. Liu, K. Li, S. Q. Zang, T. C. W. Mak, CCS Chem. 2019, 1, 553–560;
- 17cY. Jin, Q. C. Peng, S. Li, H. F. Su, P. Luo, M. Yang, X. Zhang, K. Li, S. Q. Zang, T. C. W. Mark, Natl. Sci. Rev. 2022, 9, nwab216.
- 18
- 18aR. W. Huang, X. Y. Dong, B. J. Yan, X. S. Du, D. H. Wei, S. Q. Zang, T. C. W. Mak, Angew. Chem. Int. Ed. 2018, 57, 8560–8566; Angew. Chem. 2018, 130, 8696–8702;
- 18bR. W. Huang, Y. S. Wei, X. Y. Dong, X. H. Wu, C. X. Du, S. Q. Zang, T. C. W. Mak, Nat. Chem. 2017, 9, 689–697;
- 18cY. Liu, X. Guan, Q. Fang, Aggregate 2021, 2, e34.
- 19D. Zhang, T. Huang, L. Duan, Adv. Mater. 2020, 32, 1902391.
- 20Y. Zhao, X. Liu, D. Y. Lei, Y. Chai, Nanoscale 2014, 6, 1311–1317.
- 21
- 21aK. Xia, P. Ran, W. Wang, J. Yu, G. Xu, K. Wang, X. Pi, Q. He, Y. Yang, J. Pan, Adv. Opt. Mater. 2022, 10, 2201028;
- 21bL. J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Nat. Commun. 2020, 11, 4329;
- 21cF. Zhang, Y. Zhou, Z. Chen, M. Wang, Z. Ma, X. Chen, M. Jia, D. Wu, J. Xiao, X. Li, Y. Zhang, Z. Shi, C. Shan, Adv. Mater. 2022, 34, 2204801;
- 21dQ. Zhou, J. Ren, J. Xiao, L. Lei, F. Liao, H. Di, C. Wang, L. Yang, Q. Chen, X. Yang, Y. Zhao, X. Han, Nanoscale 2021, 13, 19894–19902;
- 21eX. Zhou, K. Han, Y. Wang, J. Jin, S. Jiang, Q. Zhang, Z. Xia, Adv. Mater. 2023, 35, 2212022.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.