Tetranuclear CuII Cluster as the Ten Node Building Unit for the Construction of a Metal–Organic Framework for Efficient C2H2/CO2 Separation
Dr. Fahui Xiang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
These authors contributed equally to this work.
Search for more papers by this authorHao Zhang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yisi Yang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorLu Li
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZhenni Que
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorLiangji Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZhen Yuan
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorShimin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZizhu Yao
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorProf. Jianwei Fu
Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
Search for more papers by this authorProf. Shengchang Xiang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Zhangjing Zhang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorDr. Fahui Xiang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
These authors contributed equally to this work.
Search for more papers by this authorHao Zhang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yisi Yang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorLu Li
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZhenni Que
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorLiangji Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZhen Yuan
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorShimin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorZizhu Yao
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorProf. Jianwei Fu
Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
Search for more papers by this authorProf. Shengchang Xiang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorCorresponding Author
Prof. Zhangjing Zhang
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
Search for more papers by this authorAbstract
Rational design of high nuclear copper cluster-based metal–organic frameworks has not been established yet. Herein, we report a novel MOF (FJU-112) with the ten-connected tetranuclear copper cluster [Cu4(PO3)2(μ2-H2O)2(CO2)4] as the node which was capped by the deprotonated organic ligand of H4L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2H2/CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2H2/CO2 separation performance is contributed to the strong π-complexation interactions between the C2H2 molecules and framework pore surfaces, leading to its more C2H2 uptakes over CO2 molecules.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202300638-sup-0001-FJU-112-checkcif.pdf97.9 KB | Supporting Information |
ange202300638-sup-0001-fju-112.cif1.6 MB | Supporting Information |
ange202300638-sup-0001-misc_information.pdf10.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Ebadi Amooghin, H. Sanaeepur, R. Luque, H. Garcia, B. Chen, Chem. Soc. Rev. 2022, 51, 7427–7508;
- 1bW. Fan, S. B. Peh, Z. Zhang, H. Yuan, Z. Yang, Y. Wang, K. Chai, D. Sun, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 17338–17343; Angew. Chem. 2021, 133, 17478–17483;
- 1cY. Xiao, A. N. Hong, Y. Chen, H. Yang, Y. Wang, X. Bu, P. Feng, Small 2022, 19, 2205119;
- 1dH. Zeng, M. Xie, Y.-L. Huang, Y. Zhao, X.-J. Xie, J.-P. Bai, M.-Y. Wang, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519; Angew. Chem. 2019, 131, 8603–8607.
- 2
- 2aY. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2020, 59, 19027–19030; Angew. Chem. 2020, 132, 19189–19192;
- 2bL. Zhang, K. Jiang, L. Yang, L. Li, E. Hu, L. Yang, K. Shao, H. Xing, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 15995–16002; Angew. Chem. 2021, 133, 16131–16138;
- 2cZ. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288; Angew. Chem. 2021, 133, 5343–5348;
- 2dY. Ye, S. Xian, H. Cui, K. Tan, L. Gong, B. Liang, T. Pham, H. Pandey, R. Krishna, P. C. Lan, K. A. Forrest, B. Space, T. Thonhauser, J. Li, S. Ma, J. Am. Chem. Soc. 2022, 144, 1681–1689.
- 3H. Furukawa, F. Candara, Y. Zhang, J. Jiang, W. Queen, M. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369–4381.
- 4
- 4aY. Wang, L. Feng, W. Fan, K. Y. Wang, X. Wang, X. Wang, K. Zhang, X. Zhang, F. Dai, D. Sun, H. C. Zhou, J. Am. Chem. Soc. 2019, 141, 6967–6975;
- 4bH. Jiang, J. Jia, A. Shkurenko, Z. Chen, K. Adil, Y. Belmabkhout, L. Weselinski, A. Assen, D. Xue, M. O'Keeffe, M. Eddaoudi, J. Am. Chem. Soc. 2018, 140, 8858–8867;
- 4cG. Cai, H. L. Jiang, Angew. Chem. Int. Ed. 2017, 56, 563–567; Angew. Chem. 2017, 129, 578–582.
- 5S. S. Y. Chui, S. M. F. Lo, J. P. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148–1150.
- 6B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745–4749; Angew. Chem. 2005, 117, 4823–4827.
- 7B. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, Science 2001, 291, 1021–1023.
- 8Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe, B. Chen, Angew. Chem. Int. Ed. 2011, 50, 3178–3181; Angew. Chem. 2011, 123, 3236–3239.
- 9Deposition number 2131129 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 10
- 10aA. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13;
- 10bA. L. Spek, Acta Crystallogr. Sect. A 1990, 46, C34.
- 11
- 11aM. Badertscher, P. Bühlmann, E. Pretsch, Springer-Verlag Berlin Heidelberg, 2009, p. 174;
- 11bY. Zhang, L. Wang, J. Hu, S. Duttwyler, X. Cui, H. Xing, CrystEngComm 2020, 22, 2649–2655.
- 12
- 12aY. Ye, Z. Ma, L. Chen, H. Lin, Q. Lin, L. Liu, Z. Li, S. Chen, Z. Zhang, S. Xiang, J. Mater. Chem. A 2018, 6, 20822–20828;
- 12bS.-L. Hou, J. Dong, X.-L. Jiang, Z.-H. Jiao, B. Zhao, Angew. Chem. Int. Ed. 2019, 58, 577–581; Angew. Chem. 2019, 131, 587–591;
- 12cT. Xu, L. Fan, P. Zhou, Z. Jiang, H. Chen, H. Lu, Y. He, CrystEngComm 2020, 22, 5961–5969;
- 12dL. Liu, S. Wu, D. Li, Y. Li, H. Zhang, L. Li, S. Jin, Z. Yao, ACS Appl. Mater. Interfaces 2022, 14, 36882–36889.
- 13
- 13aJ. Jia, F. Sun, Q. Fang, X. Liang, K. Cai, Z. Bian, H. Zhao, L. Gao, G. Zhu, Chem. Commun. 2011, 47, 9167–9169;
- 13bS.-L. Li, Y.-Q. Lan, H. Sakurai, Q. Xu, Chem. Eur. J. 2012, 18, 16302–16309;
- 13cY. Ye, S. Xiong, X. Wu, L. Zhang, Z. Li, L. Wang, Q. Chen, Z. Zhang, S. Xiang, Inorg. Chem. 2016, 55, 292–299.
- 14
- 14aY. Chai, X. Han, W. Li, S. Liu, S. Yao, C. Wang, W. Shi, I. Silva, P. Manuel, Y. Cheng, L. D. Daemen, A. J. Ramirez-Cuesta, C. C. Tang, L. Jiang, S. Yang, N. Guan, L. Li, Science 2020, 368, 1002–1006;
- 14bX. Suo, X. Cui, L. Yang, N. Xu, Y. Huang, Y. He, S. Dai, H. Xing, Adv. Mater. 2020, 32, 1907601;
- 14cL. Wang, N. Xu, Y. Hu, W. Sun, R. Krishna, J. Li, Y. Jiang, S. Duttwyler, Y. Zhang, Nano Res. 2023, 16, 3536–3541.
- 15
- 15aZ. Xu, X. Xiong, J. Xiong, R. Krishna, L. Li, Y. Fan, F. Luo, B. Chen, Nat. Commun. 2020, 11, 3163;
- 15bC. X. Chen, Z. W. Wei, T. Pham, P. C. Lan, L. Zhang, K. A. Forrest, S. Chen, A. M. Al-Enizi, A. Nafady, C.-Y. Su, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 9680–9685; Angew. Chem. 2021, 133, 9766–9771.
- 16
- 16aY. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136;
- 16bW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737;
- 16cL. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna, J. Hu, Y. Jiang, Y. He, H. Xing, Angew. Chem. Int. Ed. 2021, 60, 22865–22870; Angew. Chem. 2021, 133, 23047–23052;
- 16dK. Shao, H. M. Wen, C. C. Liang, X. Xiao, X. W. Gu, B. Chen, G. Qian, B. Li, Angew. Chem. Int. Ed. 2022, 61, e202211523; Angew. Chem. 2022, 134, e202211523;
- 16eH. Yang, Y. Chen, C. Dang, A. N. Hong, P. Feng, X. Bu, J. Am. Chem. Soc. 2022, 144, 20221–20226.
- 17
- 17aJ. Gao, X. Qian, R. B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 4396–4400; Angew. Chem. 2020, 132, 4426–4430;
- 17bH. Zeng, X. J. Xie, Y. Wang, D. Luo, R. J. Wei, W. Lu, D. Li, Chem. Sci. 2022, 13, 12876–12882;
- 17cJ. Wang, Y. Zhang, Y. Su, X. Liu, P. Zhang, R. B. Lin, S. Chen, Q. Deng, Z. Zeng, S. Deng, B. Chen, Nat. Commun. 2022, 13, 200.
- 18S. Mukherjee, Y. He, D. Franz, S.-Q. Wang, W.-R. Xian, A. A. Bezrukov, B. Space, Z. Xu, J. He, M. J. Zaworotko, Chem. Eur. J. 2020, 26, 4923–4929.
- 19Y. L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K. J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141.
- 20S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, J. Am. Chem. Soc. 2009, 131, 12415–12419.
- 21W. J. F. Trenholme, D. I. Kolokolov, M. Bound, S. P. Argent, J. A. Gould, J. Li, S. A. Barnett, A. J. Blake, A. G. Stepanov, E. Besley, T. L. Easun, S. Yang, M. Schröder, J. Am. Chem. Soc. 2021, 143, 3348–3358.
- 22S. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. Int. Ed. 2010, 49, 4615–4618; Angew. Chem. 2010, 122, 4719–4722.
- 23L.-Z. Cai, Z.-Z. Yao, S.-J. Lin, M.-S. Wang, G.-C. Guo, Angew. Chem. Int. Ed. 2021, 60, 18223–18230; Angew. Chem. 2021, 133, 18371–18378.
- 24J.-W. Zhang, M.-C. Hu, S.-N. Li, Y.-C. Jiang, P. Qu, Q.-G. Zhai, Chem. Commun. 2018, 54, 2012–2015.
- 25Y. Zhang, J. Hu, R. Krishna, L. Wang, L. Yang, X. Cui, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2020, 59, 17664–17669; Angew. Chem. 2020, 132, 17817–17822.
- 26Y. P. Li, Y. Wang, Y.-Y. Xue, H.-P. Li, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729.
- 27A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121.
- 28Z. Di, C. Liu, J. Pang, C. Chen, F. Hu, D. Yuan, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 10828–10832; Angew. Chem. 2021, 133, 10923–10927.
- 29Y. Ye, S. Chen, L. Chen, J. Huang, Z. Ma, Z. Li, Z. Yao, J. Zhang, Z. Zhang, S. Xiang, ACS Appl. Mater. Interfaces 2018, 10, 30912–30918.
- 30H. Cui, Y. Ye, H. Arman, Z. Li, A. Alsalme, R.-B. Lin, B. Chen, Cryst. Growth Des. 2019, 19, 5829–5835.
- 31X.-J. Xie, H. Zeng, M. Xie, W. Chen, G.-F. Hua, W. Lu, D. Li, Chem. Eng. J. 2022, 427, 132033.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.