Synthesis of Cyclopentadiene and Methylcyclopentadiene with Xylose or Extracted Hemicellulose
Zhenjie Yu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorZhufan Zou
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 China
These authors contributed equally to this work.
Search for more papers by this authorRan Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorGuangyi Li
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorAiqin Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorYu Cong
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Tao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Ning Li
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorZhenjie Yu
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorZhufan Zou
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 China
These authors contributed equally to this work.
Search for more papers by this authorRan Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorGuangyi Li
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorAiqin Wang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorYu Cong
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Tao Zhang
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Ning Li
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorAbstract
Cyclopentadiene (CPD) and methylcyclopentadiene (MCPD) are important intermediates that have been widely used in the production of high-energy-density rocket fuels, polymers and valuable chemicals. Currently, CPD and MCPD are produced from fossil energies at very low yields, which greatly limits their application. As a solution to this problem, we disclose an alternative two-step bio-route to access CPD and MCPD using xylose or extracted hemicellulose as the feedstock. In the first step, cyclopentanone (CPO) was directly produced by the selective hydrogenolysis of xylose or extracted hemicellulose over a commercial Ru/C catalyst in an acid-free toluene/NaCl aqueous solution biphasic system. In the second step, CPO was selectively converted to CPD by a cascade hydrodeoxygenation/dehydrogenation reaction over zinc molybdate catalysts. When methanol was introduced with CPO and hydrogen, MCPD was selectively obtained by a cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction over zinc molybdate catalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202300008-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044–4098;
- 1bD. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 2012, 41, 8075–8098;
- 1cG. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science 2005, 308, 1446–1450;
- 1dJ. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Science 2010, 327, 1110–1114;
- 1eH. A. Meylemans, R. L. Quintana, B. R. Goldsmith, B. G. Harvey, ChemSusChem 2011, 4, 465–469;
- 1fQ.-N. Xia, Q. Cuan, X.-H. Liu, X.-Q. Gong, G.-Z. Lu, Y.-Q. Wang, Angew. Chem. Int. Ed. 2014, 53, 9755–9760; Angew. Chem. 2014, 126, 9913–9918;
- 1gZ. Cao, M. Dierks, M. T. Clough, I. B. Daltro de Castro, R. Rinaldi, Joule 2018, 2, 1118–1133;
- 1hZ. Zhao, H. Shi, C. Wan, M. Y. Hu, Y. Liu, D. Mei, D. M. Camaioni, J. Z. Hu, J. A. Lercher, J. Am. Chem. Soc. 2017, 139, 9178–9185;
- 1iY. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S. F. Parker, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, S. Yang, Y. Wang, Nat. Commun. 2017, 8, 16104;
- 1jG. Nie, C. Shi, Y. Dai, Y. Liu, Y. Liu, C. Ma, Q. Liu, L. Pan, X. Zhang, J.-J. Zou, Green Chem. 2020, 22, 7765–7768.
- 2
- 2aM. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827–1870;
- 2bY. Liu, C. Luo, H. C. Liu, Angew. Chem. Int. Ed. 2012, 51, 3249–3253; Angew. Chem. 2012, 124, 3303–3307;
- 2cY. T. Cheng, Z. P. Wang, C. J. Gilbert, W. Fan, G. W. Huber, Angew. Chem. Int. Ed. 2012, 51, 11097–11100; Angew. Chem. 2012, 124, 11259–11262;
- 2dS. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S. F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan, B. F. Sels, Energy Environ. Sci. 2015, 8, 1748–1763;
- 2eI. Scodeller, S. Mansouri, D. Morvan, E. Muller, K. de Oliveira Vigier, R. Wischert, F. Jérôme, Angew. Chem. Int. Ed. 2018, 57, 10510–10514; Angew. Chem. 2018, 130, 10670–10674;
- 2fS. Song, J. G. Zhang, G. Gozaydin, N. Yan, Angew. Chem. Int. Ed. 2019, 58, 4934–4937; Angew. Chem. 2019, 131, 4988–4991;
- 2gY. Liao, S.-F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolaï, K. Van Aelst, M. Maesen, H. Matsushima, J. M. Thevelein, K. Van Acker, B. Lagrain, D. Verboekend, B. F. Sels, Science 2020, 367, 1385.
- 3
- 3aX. Zhang, L. Pan, L. Wang, J.-J. Zou, Chem. Eng. Sci. 2018, 180, 95–125;
- 3bH. S. Chung, C. S. H. Chen, R. A. Kremer, J. R. Boulton, G. W. Burdette, Energy Fuels 1999, 13, 641–649.
- 4B. J. Levandowski, R. T. Raines, Chem. Rev. 2021, 121, 6777–6801.
- 5
- 5aD. Lan, L. Ma, Y. Chun, C. Wu, L. Sun, J. Zhu, J. Catal. 2010, 275, 257–269;
- 5bL. Sun, Z. Wu, J. Kou, Y. Chun, Y. Wang, J. Zhu, Z. Zou, Chin. J. Catal. 2006, 27, 725–731;
- 5cB. Wang, B. Mu, X. Deng, H. Cui, S. Xu, X. Zhou, F. Zou, Y. Li, L. Yang, Y. Li, Y. Hu, Chem. Eur. J. 2005, 11, 669–679.
- 6M. Claus, E. Claus, P. Claus, D. Honicke, R. Fodish, M. Olson, Ullmann′s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2016.
- 7
- 7aG. Li, B. Hou, A. Wang, X. Xin, Y. Cong, X. Wang, N. Li, T. Zhang, Angew. Chem. Int. Ed. 2019, 58, 12154–12158; Angew. Chem. 2019, 131, 12282–12286;
- 7bY. Liu, R. Wang, H. Qi, X. Y. Liu, G. Li, A. Wang, X. Wang, Y. Cong, T. Zhang, N. Li, Nat. Commun. 2021, 12, 46;
- 7cR. Wang, Y. Liu, G. Li, A. Wang, X. Wang, Y. Cong, T. Zhang, N. Li, ACS Catal. 2021, 11, 4810–4820;
- 7dJ.-D. Woodroffe, B. G. Harvey, ChemSusChem 2021, 14, 339–343.
- 8
- 8aJ. Q. Bond, A. A. Upadhye, H. Olcay, G. A. Tompsett, J. Jae, R. Xing, D. M. Alonso, D. Wang, T. Zhang, R. Kumar, A. Foster, S. M. Sen, C. T. Maravelias, R. Malina, S. R. H. Barrett, R. Lobo, C. E. Wyman, J. A. Dumesic, G. W. Huber, Energy Environ. Sci. 2014, 7, 1500–1523;
- 8bT. vom Stein, P. M. Grande, H. Kayser, F. Sibilla, W. Leitner, P. Dominguez de Maria, Green Chem. 2011, 13, 1772–1777;
- 8cB. Cheng, X. Zhang, Q. Lin, F. Xin, R. Sun, X. Wang, J. Ren, Biotechnol. Biofuels 2018, 11, 324.
- 9
- 9aM. Hronec, K. Fulajtarova, Catal. Commun. 2012, 24, 100–104;
- 9bG. S. Zhang, M. M. Zhu, Q. Zhang, Y. M. Liu, H. Y. He, Y. Cao, Green Chem. 2016, 18, 2155–2164.
- 10
- 10aX. Li, Y. Zhang, Q. Xia, X. Liu, K. Peng, S. Yang, Y. Wang, Ind. Eng. Chem. Res. 2018, 57, 3545–3553;
- 10bZ. Jiang, P. Zhao, J. Li, X. Liu, C. Hu, ChemSusChem 2018, 11, 397–405.
- 11
- 11aS. E. Hunter, P. E. Savage, Chem. Eng. Sci. 2004, 59, 4903–4909;
- 11bN. Akiya, P. E. Savage, Chem. Rev. 2002, 102, 2725–2750.
- 12
- 12aT. Atsushi, O. Mika, N. Shun, E. Kohki, Chem. Lett. 2010, 39, 838–840;
- 12bV. Choudhary, S. I. Sandler, D. G. Vlachos, ACS Catal. 2012, 2, 2022–2028.
- 13
- 13aA. S. Dias, M. Pillinger, A. A. Valente, J. Catal. 2005, 229, 414–423;
- 13bB. Pholjaroen, N. Li, Z. Wang, A. Wang, T. Zhang, J. Energy Chem. 2013, 22, 826–832.
- 14
- 14aY. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, J. Xu, Green Chem. 2013, 15, 1932–1940;
- 14bM. Hronec, K. Fulajtárova, T. Soták, Appl. Catal. B 2014, 154–155, 294–300;
- 14cR. Fang, H. Liu, R. Luque, Y. Li, Green Chem. 2015, 17, 4183–4188;
- 14dM. Hronec, K. Fulajtárová, I. Vávra, T. Soták, E. Dobročka, M. Mičušík, Appl. Catal. B 2016, 181, 210–219.
- 15
- 15aD. Wu, S. Zhang, W. Y. Hernández, W. Baaziz, O. Ersen, M. Marinova, A. Y. Khodakov, V. V. Ordomsky, ACS Catal. 2021, 11, 19–30;
- 15bD. Wu, Q. Wang, O. V. Safonova, D. V. Peron, W. Zhou, Z. Yan, M. Marinova, A. Y. Khodakov, V. V. Ordomsky, Angew. Chem. Int. Ed. 2021, 60, 12513–12523; Angew. Chem. 2021, 133, 12621–12631.
- 16W. Li, L. Ye, Q. Fang, J. Zou, J. Yang, Y. Li, Energy Fuels 2021, 35, 14023–14034.
- 17
- 17aT. Prasomsri, T. Nimmanwudipong, Y. Roman-Leshkov, Energy Environ. Sci. 2013, 6, 1732–1738;
- 17bT. Prasomsri, M. Shetty, K. Murugappan, Y. Roman-Leshkov, Energy Environ. Sci. 2014, 7, 2660–2669.
- 18F. Chen, N. Li, X. Yang, L. Li, G. Li, S. Li, W. Wang, Y. Hu, A. Wang, Y. Cong, X. Wang, T. Zhang, ACS Sustainable Chem. Eng. 2016, 4, 6160–6166.
- 19R. Tuba, J. Balogh, A. Hlil, M. Barłóg, M. Al-Hashimi, H. S. Bazzi, ACS Sustainable Chem. Eng. 2016, 4, 6090–6094.
- 20W.-L. Dai, H. Chen, Y. Cao, H. Li, S. Xie, K. Fan, Chem. Commun. 2003, 892–893.
- 21
- 21aY. Liu, G. Li, Y. Hu, A. Wang, F. Lu, J.-J. Zou, Y. Cong, N. Li, T. Zhang, Joule 2019, 3, 1028–1036;
- 21bZ. Yu, G. Li, F. Lu, X. Si, A. Wang, X. Wang, Y. Cong, T. Zhang, N. Li, Chem Catal. 2022, 2, 595–609.
- 22
- 22aR. Wang, G. Li, H. Tang, A. Wang, G. Xu, Y. Cong, X. Wang, T. Zhang, N. Li, ACS Sustainable Chem. Eng. 2019, 7, 17354–17361;
- 22bG. Nie, X. Zhang, L. Pan, M. Wang, J.-J. Zou, Chem. Eng. Sci. 2018, 180, 64–69;
- 22cJ. S. Heyne, A. L. Boehman, S. Kirby, Energy Fuels 2009, 23, 5879–5885.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.