Simultaneous co-Photocatalytic CO2 Reduction and Ethanol Oxidation towards Synergistic Acetaldehyde Synthesis
Qiong Liu
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China
Search for more papers by this authorJingjun Lin
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorHui Cheng
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorLiling Wei
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorCorresponding Author
Fuxian Wang
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China
Search for more papers by this authorQiong Liu
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China
Search for more papers by this authorJingjun Lin
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorHui Cheng
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorLiling Wei
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Search for more papers by this authorCorresponding Author
Fuxian Wang
Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, Guangdong, 510070 China
Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, China
Search for more papers by this authorAbstract
Photocatalytic conversion of CO2 is of great interest but it often suffers sluggish oxidation half reaction and undesired by-products. Here, we report for the first the simultaneous co-photocatalytic CO2 reduction and ethanol oxidation towards one identical value-added CH3CHO product on a rubidium and potassium co-modified carbon nitride (CN-KRb). The CN-KRb offers a record photocatalytic activity of 1212.3 μmol h−1g−1 with a high selectivity of 93.3 % for CH3CHO production, outperforming all the state-of-art CO2 photocatalysts. It is disclosed that the introduced Rb boosts the *OHCCHO fromation and facilitates the CH3CHO desorption, while K promotes ethanol adsorption and activation. Moreover, the H+ stemming from ethanol oxidation is confirmed to participate in the CO2 reduction process, endowing near ideal overall atomic economy. This work provides a new strategy for effective use of the photoexcited electron and hole for high selective and sustainable conversion of CO2 paired with oxidation reaction into identical product.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218720-sup-0001-misc_information.pdf5.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Lin, S. Luo, H. Zhang, J. Ye, Joule 2022, 6, 294–314;
- 1bS. Xie, W. Ma, X. Wu, H. Zhang, Q. Zhang, Y. Wang, Y. Wang, Energy Environ. Sci. 2021, 14, 37–89.
- 2
- 2aH. S. Shafaat, J. Y. Yang, Nat. Catal. 2021, 4, 928–933;
- 2bQ. Wang, J. Warnan, S. Rodríguez-Jiménez, J. J. Leung, S. Kalathil, V. Andrei, K. Domen, E. Reisner, Nat. Energy 2020, 5, 703–710;
- 2cR. Li, K. Xiang, Z. Liu, Z. Peng, Y. Zou, S. Wang, Adv. Funct. Mater. 2022, 32, 2208212.
- 3W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607–4626.
- 4Q. Liu, H. Cheng, T. Chen, T. W. B. Lo, Z. Xiang, F. Wang, Energy Environ. Sci. 2022, 15, 225–233.
- 5D. An, S. Nishioka, S. Yasuda, T. Kanazawa, Y. Kamakura, T. Yokoi, S. Nozawa, K. Maeda, Angew. Chem. Int. Ed. 2022, 61, e202204948; Angew. Chem. 2022, 134, e202204948.
- 6S. Lian, M. S. Kodaimati, D. S. Dolzhnikov, R. Calzada, E. A. Weiss, J. Am. Chem. Soc. 2017, 139, 8931–8938.
- 7C. Han, Y.-H. Li, J.-Y. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2021, 60, 7962–7970; Angew. Chem. 2021, 133, 8041–8049.
- 8Q. Guo, F. Liang, X.-B. Li, Y.-J. Gao, M.-Y. Huang, Y. Wang, S.-G. Xia, X.-Y. Gao, Q.-C. Gan, Z.-S. Lin, Chem 2019, 5, 2605–2616.
- 9L. Yuan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2021, 60, 21150–21172; Angew. Chem. 2021, 133, 21320–21342.
- 10X. Wei, Y. Li, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2021, 60, 3148–3155; Angew. Chem. 2021, 133, 3185–3192.
- 11
- 11aR. Jira, Angew. Chem. Int. Ed. 2009, 48, 9034–9037; Angew. Chem. 2009, 121, 9196–9199;
- 11bP. Liu, E. J. M. Hensen, J. Am. Chem. Soc. 2013, 135, 14032–14035.
- 12J. Song, Z. Chen, X. Cai, X. Zhou, G. Zhan, R. Li, P. Wei, N. Yan, S. Xi, K. P. Loh, Adv. Mater. 2022, 34, 2204638.
- 13H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai, X. Li, G. G. Gurzadyan, J. Hou, H. Yang, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202208904; Angew. Chem. 2022, 134, e202208904.
- 14R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 15
- 15aQ. Liu, C. Chen, K. Yuan, C. D. Sewell, Z. Zhang, X. Fang, Z. Lin, Nano Energy 2020, 77, 105104;
- 15bQ. Liu, H. Cao, W. Xu, J. Li, Q. Zhou, W. Tao, H. Zhu, X. Cao, L. Zhong, J. Lu, X. Peng, J. Wu, Cell Rep. Phys. Sci. 2021, 2, 100491.
- 16A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893–4908.
- 17D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 2021, 6, 388–397.
- 18W.-H. Li, J. Yang, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202213318; Angew. Chem. 2022, 134, e202213318.
- 19M. H. V. Huynh, T. J. Meyer, Chem. Rev. 2007, 107, 5004–5064.
- 20
- 20aD. Antón-García, E. Edwardes Moore, M. A. Bajada, A. Eisenschmidt, A. R. Oliveira, I. A. C. Pereira, J. Warnan, E. Reisner, Nat. Synth. 2022, 1, 77–86;
- 20bZ. Liang, L. Song, S. Deng, Y. Zhu, E. Stavitski, R. R. Adzic, J. Chen, J. X. Wang, J. Am. Chem. Soc. 2019, 141, 9629–9636.
- 21G. Wang, Z. Chen, T. Wang, D. Wang, J. Mao, Angew. Chem. Int. Ed. 2022, 61, e202210789; Angew. Chem. 2022, 134, e202210789.
- 22A. Ott, J.-E. Germond, A. Chaintreau, J. Agric. Food Chem. 2000, 48, 1512–1517.
- 23
- 23aA. J. Garza, A. T. Bell, M. Head-Gordon, ACS Catal. 2018, 8, 1490–1499;
- 23bX. Chang, A. Malkani, X. Yang, B. Xu, J. Am. Chem. Soc. 2020, 142, 2975–2983.
- 24
- 24aS. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. Stephens, K. Chan, C. Hahn, Chem. Rev. 2019, 119, 7610–7672;
- 24bY. Wang, E. Chen, J. Tang, ACS Catal. 2022, 12, 7300–7316.
- 25X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li, Y. Huang, J. Am. Chem. Soc. 2020, 142, 19001–19005.
- 26R. Das, K. Das, B. Ray, V. Prabhakaran, S. Chirambatte Peter, Energy Environ. Sci. 2022, 15, 1967–1976.
- 27X.-Y. Ma, C. Ding, H. Li, K. Jiang, S. Duan, W.-B. Cai, J. Phys. Chem. Lett. 2020, 11, 8727–8734.
- 28J. H. Montoya, A. A. Peterson, J. K. Nørskov, ChemCatChem 2013, 5, 737–742.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.