Ultra-long Near-infrared Repeatable Photochemical Afterglow Mediated by Reversible Storage of Singlet Oxygen for Information Encryption
Lei Chen
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorKuangshi Sun
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Donghao Hu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Xianlong Su
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorLinna Guo
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJiamiao Yin
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYuetian Pei
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiwei Fan
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Qian Liu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Ming Xu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Wei Feng
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Fuyou Li
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Yiwu Research Institute, Fudan University, Jinhua, Yiwu, 322000 China
Search for more papers by this authorLei Chen
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorKuangshi Sun
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Donghao Hu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Xianlong Su
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorLinna Guo
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorJiamiao Yin
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYuetian Pei
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiwei Fan
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Qian Liu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Ming Xu
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorProf. Wei Feng
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Fuyou Li
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433 China
Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
Yiwu Research Institute, Fudan University, Jinhua, Yiwu, 322000 China
Search for more papers by this authorAbstract
Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218670-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Jiang, K. Pu, Chem. Rev. 2021, 121, 13086–13131.
- 2
- 2aW. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, Z. An, X. Liu, W. Huang, Nat. Mater. 2021, 20, 1539–1544;
- 2bC. Li, X. Tang, L. Zhang, C. Li, Z. Liu, Z. Bo, Y. Dong, Y. Tian, Y. Dong, B. Tang, Adv. Opt. Mater. 2015, 3, 1184–1190.
- 3
- 3aZ. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690;
- 3bP. Xue, P. Wang, P. Chen, B. Yao, P. Gong, J. Sun, Z. Zhang, R. Lu, Chem. Sci. 2017, 8, 6060–6065;
- 3cK. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2016, 55, 7231–7235; Angew. Chem. 2016, 128, 7347–7351.
- 4A. S. Paterson, B. Raja, G. Garvey, A. Kolhatkar, A. E. Hagstrom, K. Kourentzi, T. R. Lee, R. C. Willson, Anal. Chem. 2014, 86, 9481–9488.
- 5
- 5aQ. le Masne de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271;
- 5bA. Abdukayum, J. Chen, Q. Zhao, X. Yan, J. Am. Chem. Soc. 2013, 135, 14125–14133;
- 5cT. Maldiney, A. Lecointre, B. Viana, A. Bessiere, M. Bessodes, D. Gourier, C. Richard, D. Scherman, J. Am. Chem. Soc. 2011, 133, 11810–11815;
- 5dX. Wang, H. Xiao, P. Chen, Q. Yang, B. Chen, C. Tung, Y. Chen, L. Wu, J. Am. Chem. Soc. 2019, 141, 5045–5050;
- 5eX. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665.
- 6
- 6aY. Li, M. Gecevicius, J. Qiu, Chem. Soc. Rev. 2016, 45, 2090–2136;
- 6bJ. Xu, S. Tanabe, J. Lumin. 2019, 205, 581–620.
- 7
- 7aS. Xu, R. Chen, C. Zheng, W. Huang, Adv. Mater. 2016, 28, 9920–9940;
- 7bW. Zhao, Z. He, B. Tang, Nat. Rev. Mater. 2020, 5, 869–885;
- 7cA. D. Nidhankar, Goudappagouda, V. C. Wakchaure, S. S. Babu, Chem. Sci. 2021, 12, 4216–4236.
- 8
- 8aT. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Stręk, J. Solid State Chem. 2003, 171, 114–122;
- 8bZ. Pan, Y. Lu, F. Liu, Nat. Mater. 2012, 11, 58–63;
- 8cF. Liu, W. Yan, Y. Chuang, Z. Zhen, J. Xie, Z. Pan, Sci. Rep. 2013, 3, 1554.
- 9L. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406–411.
- 10
- 10aQ. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Nat. Biotechnol. 2017, 35, 1102–1110;
- 10bY. Jiang, J. Huang, X. Zhen, Z. Zeng, J. Li, C. Xie, Q. Miao, J. Chen, P. Chen, K. Pu, Nat. Commun. 2019, 10, 2064;
- 10cY. Liu, Y. Li, Y. Wen, X. Su, M. Xu, W. Feng, Q. Liu, F. Li, ACS Mater. Lett. 2021, 3, 713–720.
- 11
- 11aC. Xie, X. Zhen, Q. Miao, Y. Lyu, K. Pu, Adv. Mater. 2018, 30, 1801331;
- 11bX. Zhen, C. Xie, K. Pu, Angew. Chem. Int. Ed. 2018, 57, 3938–3942; Angew. Chem. 2018, 130, 4002–4006;
- 11cX. Ni, X. Zhang, X. Duan, H. Zheng, X. Xue, D. Ding, Nano Lett. 2019, 19, 318–330;
- 11dW. Chen, Y. Zhang, Q. Li, Y. Jiang, H. Zhou, Y. Liu, Q. Miao, M. Gao, J. Am. Chem. Soc. 2022, 144, 6719–6726.
- 12
- 12aY. Wang, G. Song, S. Liao, Q. Qin, Y. Zhao, L. Shi, K. Guan, X. Gong, P. Wang, X. Yin, Q. Chen, X. Zhang, Angew. Chem. Int. Ed. 2021, 60, 19779–19789; Angew. Chem. 2021, 133, 19932–19942;
- 12bL. Wu, Y. Ishigaki, Y. Hu, K. Sugimoto, W. Zeng, T. Harimoto, Y. Sun, J. He, T. Suzuki, X. Jiang, H. Chen, D. Ye, Nat. Commun. 2020, 11, 446;
- 12cY. Liu, L. Teng, Y. Lyu, G. Song, X. Zhang, W. Tan, Nat. Commun. 2022, 13, 2216;
- 12dH. Yuan, L. Guo, Q. Su, X. Su, Y. Wen, T. Wang, P. Yang, M. Xu, F. Li, ACS Appl. Mater. Interfaces 2021, 13, 27991–27998.
- 13X. Su, Y. Wen, W. Yuan, M. Xu, Q. Liu, C. Huang, F. Li, Chem. Commun. 2020, 56, 10694–10697.
- 14
- 14aM. Xu, J. Liu, X. Su, Q. Zhou, H. Yuan, Y. Wen, Y. Cheng, F. Li, Sci. China Chem. 2021, 64, 2125–2133;
- 14bX. Su, X. Kong, K. Sun, Q. Liu, Y. Pei, D. Hu, M. Xu, W. Feng, F. Li, Angew. Chem. Int. Ed. 2022, 61, e202201630; Angew. Chem. 2022, 134, e202201630.
- 15
- 15aQ. Zhou, X. Qiu, X. Su, Q. Liu, Y. Wen, M. Xu, F. Li, Small 2021, 17, 2100377;
- 15bY. Wen, Q. Zhou, X. Su, D. Hu, M. Xu, W. Feng, F. Li, ACS Appl. Mater. Interfaces 2022, 14, 11681–11689.
- 16
- 16aR. B. Kurtz, Trans. N. Y. Acad. Sci. 1954, 16, 399–401;
- 16bE. A. Ogryzlo, A. E. Pearson, J. Phys. Chem. 1968, 72, 2913–2916;
- 16cA. A. Krasnovsky, C. S. Foote, J. Am. Chem. Soc. 1993, 115, 6013–6016;
- 16dS. T. Murphy, K. Kondo, C. S. Foote, J. Am. Chem. Soc. 1999, 121, 3751–3755;
- 16eA. A. Gorman, I. Hamblett, T. J. Hill, J. Am. Chem. Soc. 1995, 117, 10751–10752;
- 16fD. M. Baigel, A. A. Gorman, I. Hamblett, T. J. Hill, J. Photochem. Photobiol. B 1998, 43, 229–231;
- 16gJ. M. Baumes, J. J. Gassensmith, J. Giblin, J. J. Lee, A. G. White, W. J. Culligan, W. M. Leevy, M. Kuno, B. D. Smith, Nat. Chem. 2010, 2, 1025–1030;
- 16hE. M. Gholizadeh, S. K. K. Prasad, Z. L. Teh, T. Ishwara, S. Norman, A. J. Petty, J. H. Cole, S. Cheong, R. D. Tilley, J. E. Anthony, S. Huang, T. W. Schmidt, Nat. Photonics 2020, 14, 585–590.
- 17
- 17aM. Matsumoto, M. Yamada, N. Watanabe, Chem. Commun. 2005, 483–485;
- 17bS. Benz, S. Notzli, J. S. Siegel, D. Eberli, H. J. Jessen, J. Med. Chem. 2013, 56, 10171–10182.
- 18
- 18aI. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin, E. U. Akkaya, Angew. Chem. Int. Ed. 2016, 55, 2875–2878; Angew. Chem. 2016, 128, 2925–2928;
- 18bS. Ayan, G. Gunaydin, N. Yesilgul-Mehmetcik, M. E. Gedik, O. Seven, E. U. Akkaya, Chem. Commun. 2020, 56, 14793–14796.
- 19W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder, G. Schnurpfeil, J. Porphyrins Phthalocyanines 1998, 02, 145–158.
- 20J. R. Hurst, J. D. McDonald, G. B. Schuster, J. Am. Chem. Soc. 1982, 104, 2065–2067.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.