Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks
Linjing Tong
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorYuhong Lin
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorXiaoxue Kou
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorYujian Shen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Yong Shen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Siming Huang
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436 China
Search for more papers by this authorProf. Fang Zhu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Guosheng Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorProf. Gangfeng Ouyang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorLinjing Tong
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorYuhong Lin
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorXiaoxue Kou
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorYujian Shen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Yong Shen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Siming Huang
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436 China
Search for more papers by this authorProf. Fang Zhu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Guosheng Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorProf. Gangfeng Ouyang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes’ activity in addition to the active center.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202218661-sup-0001-misc_information.pdf9.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. P. Begley, Acc. Chem. Res. 1994, 27, 12, 394–401.
- 2J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li, Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 2019, 48, 1004–1076.
- 3L. O. Björn, Photochem. Photobiol. 2018, 94, 459–465.
- 4X. Huang, J. Feng, J. Cui, G. Jiang, W. Harrison, X. Zang, J. Zhou, B. Wang, H. Zhao, Nat. Catal. 2022, 5, 586–593.
- 5I. H. Kavakli, I. Baris, M. Tardu, S. Gul, H. Oner, S. Cal, S. Bulut, D. Yarparvar, C. Berkel, P. Ustaoglu, C. Aydin, Photochem. Photobiol. 2017, 93, 93–103.
- 6N. Archipowa, R. J. Kutta, D. J. Heyes, N. S. Scrutton, Angew. Chem. Int. Ed. 2018, 57, 2682–2686; Angew. Chem. 2018, 130, 2712–2716.
- 7L.-E. Meyer, B. E. Eser, S. Kara, Curr. Opin. Green. Sustainable Chem. 2021, 31, 100496.
- 8D. Sorigué, B. Légeret, S. Cuiné, S. Blangy, S. Moulin, E. Billon, P. Richaud, S. Brugière, Y. Couté, D. Nurizzo, P. Müller, K. Brettel, D. Pignol, P. Arnoux, Y. Li-Beisson, G. Peltier, F. Beisson, Science 2017, 357, 903–907.
- 9W. Liang, P. Wied, F. Carraro, C. J. Sumby, B. Nidetzky, C. K. Tsung, P. Falcaro, C. J. Doonan, Chem. Rev. 2021, 121, 1077–1129.
- 10Q. Wang, H. Wei, Z. Zhang, E. Wang, S. Dong, TrAC Trends Anal. Chem. 2018, 105, 218–224.
- 11L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2007, 2, 577–583.
- 12Y. Huang, J. Ren, X. Qu, Chem. Rev. 2019, 119, 4357–4412.
- 13Z. Zhang, X. Zhang, B. Liu, J. Liu, J. Am. Chem. Soc. 2017, 139, 5412–5419.
- 14H. Sun, Y. Zhou, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2018, 57, 9224–9237; Angew. Chem. 2018, 130, 9366–9379.
- 15K. I. Otake, Y. Cui, C. T. Buru, Z. Li, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2018, 140, 8652–8656.
- 16B. Xu, H. Wang, W. Wang, L. Gao, S. Li, X. Pan, H. Wang, H. Yang, X. Meng, Q. Wu, L. Zheng, S. Chen, X. Shi, K. Fan, X. Yan, H. Liu, Angew. Chem. Int. Ed. 2019, 58, 4911–4916; Angew. Chem. 2019, 131, 4965–4970.
- 17D. Wang, D. Jana, Y. Zhao, Acc. Chem. Res. 2020, 53, 1389–1400.
- 18G. Li, W. Ma, Y. Yang, C. Zhong, H. Huang, D. Ouyang, Y. He, W. Tian, J. Lin, Z. Lin, ACS Appl. Mater. Interfaces 2021, 13, 49482–49489.
- 19Y. Li, T.-X. Luan, K. Cheng, D. Zhang, W. Fan, P.-Z. Li, Y. Zhao, ACS Mater. Lett. 2022, 4, 1160–1167.
- 20K. Wang, D. Feng, T. F. Liu, J. Su, S. Yuan, Y. P. Chen, M. Bosch, X. Zou, H. C. Zhou, J. Am. Chem. Soc. 2014, 136, 13983–13986.
- 21Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu, S. Lin, B. Jiang, X. Zhao, L. Miao, C.-W. Wei, Q. Liu, Y.-W. Lin, Y. Du, C. J. Butch, H. Wei, Sci. Adv. 2020, 6, eabb2695.
- 22T. Wu, S. Huang, H. Yang, N. Ye, L. Tong, G. Chen, Q. Zhou, G. Ouyang, ACS Mater. Lett. 2022, 4, 751–757.
- 23D. Jiang, D. Ni, Z. T. Rosenkrans, P. Huang, X. Yan, W. Cai, Chem. Soc. Rev. 2019, 48, 3683–3704.
- 24S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong, Y. Mao, Z. Zhang, R. Gao, W. Chen, R. Zhang, Q. Liang, H. Li, S. Liu, Y. Wang, Q. Zhang, L. Gu, D. Duan, M. Liang, D. Wang, X. Yan, Y. Li, Nat. Catal. 2021, 4, 407–417.
- 25Q. Zhou, H. Yang, X. Chen, Y. Xu, D. Han, S. Zhou, S. Liu, Y. Shen, Y. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202112453; Angew. Chem. 2022, 134, e202112453.
- 26J. E. Mondloch, M. J. Katz, W. C. IsleyIII, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, O. K. Farha, Nat. Mater. 2015, 14, 512–516.
- 27L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Sci. Adv. 2019, 5, eaav5490.
- 28J. Chen, Y. Zhu, S. Kaskel, Angew. Chem. Int. Ed. 2021, 60, 5010–5035; Angew. Chem. 2021, 133, 5064–5091.
- 29Z. Zhou, G. Roelfes, Nat. Catal. 2020, 3, 289–294.
- 30P. Li, M. R. Ryder, J. F. Stoddart, Acc. Mater. Res. 2020, 1, 77–87.
- 31I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Angew. Chem. Int. Ed. 2019, 58, 11160–11170; Angew. Chem. 2019, 131, 11278–11288.
- 32B. Wang, R. B. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2020, 142, 14399–14416.
- 33W. Yang, W. Zhou, B. Chen, Cryst. Growth Des. 2019, 19, 5184–5188.
- 34C. A. Zentner, H. W. Lai, J. T. Greenfield, R. A. Wiscons, M. Zeller, C. F. Campana, O. Talu, S. A. FitzGerald, J. L. Rowsell, Chem. Commun. 2015, 51, 11642–11645.
- 35J. X. Wang, J. Pei, X. W. Gu, Y. X. Lin, B. Li, G. Qian, Chem. Commun. 2021, 57, 10051–10054.
- 36F. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. Int. Ed. 2017, 56, 2101–2104; Angew. Chem. 2017, 129, 2133–2136.
- 37I. Hisaki, N. Q. E. Affendy, N. Tohnai, CrystEngComm 2017, 19, 4892–4898.
- 38Y. L. Li, E. V. Alexandrov, Q. Yin, L. Li, Z. B. Fang, W. Yuan, D. M. Proserpio, T. F. Liu, J. Am. Chem. Soc. 2020, 142, 7218–7224.
- 39W. Yang, J. Wang, H. Wang, Z. Bao, J. C.-G. Zhao, B. Chen, Cryst. Growth Des. 2017, 17, 6132–6137.
- 40I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, J. Am. Chem. Soc. 2016, 138, 6617–6628.
- 41K. Ma, P. Li, J. H. Xin, Y. Chen, Z. Chen, S. Goswami, X. Liu, S. Kato, H. Chen, X. Zhang, J. Bai, M. C. Wasson, R. R. Maldonado, R. Q. Snurr, O. K. Farha, Cell Rep. Phys. Sci. 2020, 1, 100024.
- 42Q. Yin, P. Zhao, R. J. Sa, G. C. Chen, J. Lu, T. F. Liu, R. Cao, Angew. Chem. Int. Ed. 2018, 57, 7691–7696; Angew. Chem. 2018, 130, 7817–7822.
- 43T. Takeda, M. Ozawa, T. Akutagawa, Angew. Chem. Int. Ed. 2019, 58, 10345–10352; Angew. Chem. 2019, 131, 10453–10460.
- 44X. Zhang, L. Li, J. X. Wang, H. M. Wen, R. Krishna, H. Wu, W. Zhou, Z. N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640.
- 45T. Zhang, W. He, X. Song, D. Wu, Y. Xia, Y. Liu, L. Wu, W. Sun, F. Lin, J. Chen, Anal. Chim. Acta 2021, 1155, 338357.
- 46Y. Wang, Y. Zhu, A. Binyam, M. Liu, Y. Wu, F. Li, Biosens. Bioelectron. 2016, 86, 432–438.
- 47X. Zhang, Q. Yang, Y. Lang, X. Jiang, P. Wu, Anal. Chem. 2020, 92, 12400–12406.
- 48Y. Wang, K. Ma, J. Bai, T. Xu, W. Han, C. Wang, Z. Chen, K. O. Kirlikovali, P. Li, J. Xiao, O. K. Farha, Angew. Chem. Int. Ed. 2022, 61, e202115956; Angew. Chem. 2022, 134, e202115956.
- 49U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185–194.
- 50V. F. Oswald, J. L. Lee, S. Biswas, A. C. Weitz, K. Mittra, K. Mittra, R. Fan, J. Li, J. Zhao, M. Y. Hu, E. E. Alp, E. L. Bominaar, Y. Guo, M. T. Green, M. P. Hendrich, A. S. Borovik, J. Am. Chem. Soc. 2020, 142, 11804–11817.
- 51G. Chen, S. Huang, Y. Shen, X. Kou, X. Ma, S. Huang, Q. Tong, K. Ma, W. Chen, P. Wang, J. Shen, F. Zhu, G. Ouyang, Chem 2021, 7, 2722–2742.
- 52G. Chen, L. Tong, S. Huang, S. Huang, F. Zhu, G. Ouyang, Nat. Commun. 2022, 13, 4816.
- 53M. Haarhaus, G. Cianciolo, S. Barbuto, G. La Manna, L. Gasperoni, G. Tripepi, M. Plebani, M. Fusaro, P. Magnusson, Nutrients 2022, 14, 2124.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.