Giant Polyoxoniobate-Based Inorganic Molecular Tweezers: Metal Recognitions, Ion-Exchange Interactions and Mechanism Studies
Ping-Xin Wu
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorZheng-Wei Guo
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorRong-Da Lai
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorXin-Xiong Li
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cai Sun
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorPing-Xin Wu
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorZheng-Wei Guo
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorRong-Da Lai
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorXin-Xiong Li
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cai Sun
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shou-Tian Zheng
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China
Search for more papers by this authorAbstract
This work reports the interesting and unique cation-exchange behaviors of the first indium-bridged purely inorganic 3D framework based on high-nuclearity polyoxoniobates as building units. Each nanoscale polyoxoniobate features a fascinating near-icosahedral core–shell structure with six pairs of unique inorganic “molecular tweezers” that have changeable openings for binding different metal cations via ion-exchanges and exhibit unusual selective metal-uptake behaviors. Further, the material has high chemical stability so that can undergo single-crystal-to-single-crystal metal-exchange processes to produce a dozen new crystals with high crystallinity. Based on these crystals and time-dependent metal-exchange experiments, we can visually reveal the detailed metal-exchange interactions and mechanisms of the material at the atomic precision level. This work demonstrates a rare systematic and atomic-level study on the ion-exchange properties of nanoclusters, which is of significance for the exploration of cluster-based ion-exchange materials that are still to be developed.
Conflict of interest
The authors declare no conflict of interests.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217926-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
ange202217926-sup-0001-SI_1Co-Cu_CCDC_2164418.cif1.1 MB | Supporting Information |
ange202217926-sup-0001-SI_1Co_CCDC_2164413.cif1.1 MB | Supporting Information |
ange202217926-sup-0001-SI_1Cu-30min_CCDC_2164425.cif785.8 KB | Supporting Information |
ange202217926-sup-0001-SI_1Cu-30s_CCDC_2164424.cif766.2 KB | Supporting Information |
ange202217926-sup-0001-SI_1Cu-Co_CCDC_2164419.cif817.9 KB | Supporting Information |
ange202217926-sup-0001-SI_1Cu_CCDC_2164415.cif803.8 KB | Supporting Information |
ange202217926-sup-0001-SI_1Mn-Cu_CCDC_2164416.cif1.7 MB | Supporting Information |
ange202217926-sup-0001-SI_1Mn_CCDC_2164412.cif759.2 KB | Supporting Information |
ange202217926-sup-0001-SI_1Ni-Cu_CCDC_2164417.cif905.5 KB | Supporting Information |
ange202217926-sup-0001-SI_1Ni_CCDC_2164414.cif544.7 KB | Supporting Information |
ange202217926-sup-0001-SI_1_CCDC_2164411.cif918.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. J. Flora, M. Mittal, A. Mehta, Indian J. Med. Res. 2008, 128, 501–523;
- 1bN. T. Bui, H. Kang, S. J. Teat, G. M. Su, C.-W. Pao, Y.-S. Liu, E. W. Zaia, J. Guo, J.-L. Chen, K. R. Meihaus, C. Dun, T. M. Mattox, J. R. Long, P. Fiske, R. Kostecki, J. J. Urban, Nat. Commun. 2020, 11, 3947.
- 2S. Lutsenko, Curr. Opin. Chem. Biol. 2010, 14, 211–217.
- 3F. Fu, Q. Wang, J. Environ. Manage. 2011, 92, 407–418.
- 4
- 4aE. Erdem, N. A. Karapinar, R. Donat, J. Colloid Interface Sci. 2004, 280, 309–314;
- 4bS. Wang, Y. Peng, Chem. Eng. J. 2010, 156, 11–24.
- 5
- 5aK. Jin, B. Lee, J. Park, Coord. Chem. Rev. 2021, 427, 213473;
- 5bY. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, J. Diwu, J. Su, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, J. Am. Chem. Soc. 2015, 137, 6144–6147.
- 6
- 6aM. J. Manos, M. G. Kanatzidis, Chem. Sci. 2016, 7, 4804–4824;
- 6bM. J. Manos, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 16441–16446;
- 6cM. J. Manos, K. Chrissafis, M. G. Kanatzidis, J. Am. Chem. Soc. 2006, 128, 8875–8883.
- 7
- 7aH. Sun, Y. Liu, J. Lin, Z. Yue, W. Li, J. Jin, Q. Sun, Y. Ai, M. Feng, X. Huang, Angew. Chem. Int. Ed. 2020, 59, 1878–1883; Angew. Chem. 2020, 132, 1894–1899;
- 7bS. J. Datta, W. K. Moon, D. Y. Choi, I. C. Hwang, K. B. Yoon, Angew. Chem. Int. Ed. 2014, 53, 7203–7208; Angew. Chem. 2014, 126, 7331–7336.
- 8
- 8aM. Nyman, T. M. Alam, J. Am. Chem. Soc. 2012, 134, 20131–20138;
- 8bM. Nyman, J. P. Larentzos, E. J. Maginn, M. E. Welk, D. Ingersoll, H. Park, J. B. Parise, I. Bull, F. Bonhomme, Inorg. Chem. 2007, 46, 2067–2079;
- 8cZ. Zhang, T. Murayama, M. Sadakane, H. Ariga, N. Yasuda, N. Sakaguchi, K. Asakura, W. Ueda, Nat. Commun. 2015, 6, 7731;
- 8dM. Nyman, C. R. Powers, F. Bonhomme, T. M. Alam, E. J. Maginn, D. T. Hobbs, Chem. Mater. 2008, 20, 2513–2521;
- 8eY. Ogasawara, S. Uchida, T. Maruichi, R. Ishikawa, N. Shibata, Y. Ikuhara, N. Mizuno, Chem. Mater. 2013, 25, 905–911;
- 8fS. Uchida, R. Eguchi, N. Mizuno, Angew. Chem. Int. Ed. 2010, 49, 9930–9934; Angew. Chem. 2010, 122, 10126–10130.
- 9S. Uchida, Chem. Sci. 2019, 10, 7670–7679.
- 10
- 10aA. Müller, S. Q. N. Shah, H. Bögge, M. Schmidtmann, Nature 1999, 397, 48–50;
- 10bK. Wassermann, M. H. Dickman, M. T. Pope, Angew. Chem. Int. Ed. Engl. 1997, 36, 1445–1448; Angew. Chem. 1997, 109, 1513–1516;
- 10cF. Hussain, F. Conrad, G. R. Patzke, Angew. Chem. Int. Ed. 2009, 48, 9088–9091; Angew. Chem. 2009, 121, 9252–9255;
- 10dA. R. de la Oliva, V. Sans, H. N. Miras, J. Yan, H. Zang, C. J. Richmond, D.-L. Long, L. Cronin, Angew. Chem. Int. Ed. 2012, 51, 12759–12762; Angew. Chem. 2012, 124, 12931–12934;
- 10eX. Fang, P. Kögerler, Y. Furukawa, M. Speldrich, M. Luban, Angew. Chem. Int. Ed. 2011, 50, 5212–5216; Angew. Chem. 2011, 123, 5318–5322;
- 10fB. S. Bassil, M. H. Dickman, I. Römer, B. von der Kammer, U. Kortz, Angew. Chem. Int. Ed. 2007, 46, 6192–6195; Angew. Chem. 2007, 119, 6305–6308;
- 10gS. Reinoso, M. Giménez-Marqués, J. R. Galán-Mascarós, P. Vitoria, J. M. Gutiérrez-Zorrilla, Angew. Chem. Int. Ed. 2010, 49, 8384–8388; Angew. Chem. 2010, 122, 8562–8566;
- 10hL. Jin, Z. K. Zhu, Y. L. Wu, Y. J. Qi, X. X. Li, S. T. Zheng, Angew. Chem. Int. Ed. 2017, 56, 16288–16292; Angew. Chem. 2017, 129, 16506–16510;
- 10iY. L. Wu, X. X. Li, Y. J. Qi, H. Yu, L. Jin, S. T. Zheng, Angew. Chem. Int. Ed. 2018, 57, 8572–8576; Angew. Chem. 2018, 130, 8708–8712;
- 10jP. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan, E.-B. Wang, J. Am. Chem. Soc. 2012, 134, 14004–14010;
- 10kM. Amiri, N. P. Martin, C. L. Feng, J. K. Lovio, M. Nyman, Angew. Chem. Int. Ed. 2021, 60, 12461–12466; Angew. Chem. 2021, 133, 12569–12574.
- 11Deposition Numbers 2164411 (for 1), 2164412 (for 1Mn), 2164413 (for 1Co), 2164414 (for 1Ni), 2164415 (for 1Cu), 2164416 (for 1Mn-Cu), 2164417 (for 1Ni-Cu), 2164418 (for 1Co-Cu), 2164419 (for 1Cu-Co), 2164424 (for 1Cu-30s), and 2164425 (for 1Cu-30min) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 12
- 12aC. Zhao, E. N. Glass, B. Chica, D. G. Musaev, J. M. Sumliner, R. B. Dyer, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 12085–12091;
- 12bL. Chen, K. A. San, M. J. Turo, M. Gembicky, S. Fereidouni, M. Kalaj, A. M. Schimpf, J. Am. Chem. Soc. 2019, 141, 20261–20268.
- 13L. Jin, X. X. Li, Y. J. Qi, P. P. Niu, S. T. Zheng, Angew. Chem. Int. Ed. 2016, 55, 13793–13797; Angew. Chem. 2016, 128, 13997–14001.
- 14I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244–247.
- 15
- 15aF.-G. Klärner, U. Burkert, M. Kamieth, R. Boese, J. Phys. Org. Chem. 2000, 13, 604–611;
- 15bF.-G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919–932;
- 15cA. Meiners, S. Baecker, C. Heid, C. Beuck, Y. B. Ruiz-Blanco, J. Mieres-Perez, M. Poerschke, J.-N. Grad, C. Vallet, D. Hoffmann, P. Bayer, E. Sanchez-Garcia, T. Schrader, S. K. Knauer, I. Hadroyic, Nat. Commun. 2021, 12, 1505;
- 15dS. Ibanez, C. Vicent, E. Peris, Angew. Chem. Int. Ed. 2022, 61, e202112513; Angew. Chem. 2022, 134, e202112513.
- 16C. M. Flynn, G. D. Stucky, Inorg. Chem. 1969, 8, 335–344.
- 17M. Sale, M. Avdeev, J. Appl. Crystallogr. 2012, 45, 1054–1056.
- 18G. J. P. Deblonde, A. Moncomble, G. Cote, S. Bélair, A. Chagnes, RSC Adv. 2015, 5, 7619–7627.
- 19N. Kofod, R. Arppe-Tabbara, T. J. Sørensen, J. Phys. Chem. A 2019, 123, 2734–2744.
- 20D. T. Richens, The Chemistry of Aqua Ions, Wiley, Chichester, 1997.
- 21T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 22S. V. Eliseeva, E. V. Salerno, B. A. Lopez Bermudez, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2020, 142, 16173–16176.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.