Mechanism-Guided Design of Chain-Growth Click Polymerization Based on a Thiol-Michael Reaction
Suqiu Jiang
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Hanchu Huang
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorSuqiu Jiang
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Hanchu Huang
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217895-sup-0001-misc_information.pdf8.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. D. Fairbanks, L. J. Macdougall, S. Mavila, J. Sinha, B. E. Kirkpatrick, K. S. Anseth, C. N. Bowman, Chem. Rev. 2021, 121, 6915–6990;
- 1bZ. Geng, J. J. Shin, Y. Xi, C. J. Hawker, J. Polym. Sci. 2021, 59, 963–1042;
- 1cW. Xi, T. F. Scott, C. J. Kloxin, C. N. Bowman, Adv. Funct. Mater. 2014, 24, 2572–2590;
- 1dA. Qin, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2010, 39, 2522–2544;
- 1eA. Qin, J. W. Lam, B. Z. Tang, Macromolecules 2010, 43, 8693–8702;
- 1fR. K. Iha, K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade, C. J. Hawker, Chem. Rev. 2009, 109, 5620–5686.
- 2
- 2aJ. Dodge, in Synthetic Methods in Step-Growth Polymers (Eds: M. E. Rogers, T. E. Long), John Wiley & Sons, Inc., Hoboken, New Jersey, 2003;
- 2bE. Saldivar-Guerra, E. Vivaldo-Lima, Handbook of Polymer Synthesis, Characterization, and Processing, John Wiley&Sons, Inc., Hoboken, New Jersey, 2013.
10.1002/9781118480793 Google Scholar
- 3
- 3aT. Yokozawa, Y. Ohta, Chem. Rev. 2016, 116, 1950–1968;
- 3bA. Yokoyama, T. Yokozawa, Macromolecules 2007, 40, 4093–4101.
- 4
- 4aY. Shi, R. W. Graff, X. Cao, X. Wang, H. Gao, Angew. Chem. Int. Ed. 2015, 54, 7631–7635; Angew. Chem. 2015, 127, 7741–7745;
- 4bK. Ma, X. Jin, W. Gan, C. Fan, H. Gao, Polym. Chem. 2022, 13, 891–897;
- 4cH. Kim, J. Zhao, J. Bae, L. M. Klivansky, E. A. Dailing, Y. Liu, J. R. Cappiello, K. B. Sharpless, P. Wu, ACS Cent. Sci. 2021, 7, 1919–1928;
- 4dJ. X. Lei, Q. Y. Wang, F. S. Du, Z. C. Li, Chin. J. Polym. Sci. 2021, 39, 1146–1154.
- 5Thiol-ene reaction could proceed via a radical or anionic mechanism, and the thiol-Michael reaction often represents the anionic thiol-ene reaction, see Ref.
- 5aD. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, C. N. Bowman, Chem. Mater. 2014, 26, 724–744;
- 5bP. Chakma, D. Konkolewicz, Angew. Chem. Int. Ed. 2019, 58, 9682–9695; Angew. Chem. 2019, 131, 9784–9797;
- 5cB. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog. Polym. Sci. 2006, 31, 487–531.
- 6
- 6aS. Huang, J. Sinha, M. Podgórski, X. Zhang, M. Claudino, C. N. Bowman, Macromolecules 2018, 51, 5979–5988;
- 6bJ. W. Chan, C. E. Hoyle, A. B. Lowe, M. Bowman, Macromolecules 2010, 43, 6381–6388.
- 7
- 7aJ. M. Paulusse, R. J. Amir, R. A. Evans, C. J. Hawker, J. Am. Chem. Soc. 2009, 131, 9805–9812;
- 7bF. Le Guyader, B. Quiclet-Sire, S. Seguin, S. Z. Zard, J. Am. Chem. Soc. 1997, 119, 7410–7411;
- 7cR. A. Evans, E. Rizzardo, Macromolecules 1996, 29, 6983–6989;
- 7dR. A. Evans, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1994, 27, 7935–7937.
- 8
- 8aJ. Zhuang, B. Zhao, X. Meng, J. D. Schiffman, S. L. Perry, R. W. Vachet, S. Thayumanavan, Chem. Sci. 2020, 11, 2103–2111;
- 8bL. Zhao, Y. Qu, F. Zhang, D. Ma, H. Gao, L. Gan, H. Zhang, S. Zhang, J. Fang, J. Med. Chem. 2022, 65, 6056–6069;
- 8cR. N. Reddi, E. Resnick, A. Rogel, B. V. Rao, R. Gabizon, K. Goldenberg, N. Gurwicz, D. Zaidman, A. Plotnikov, H. Barr, J. Am. Chem. Soc. 2021, 143, 4979–4992.
- 9
- 9aH. Park, T.-L. Choi, J. Am. Chem. Soc. 2012, 134, 7270–7273;
- 9bL. Errede, J. Polym. Sci. 1961, 49, 253–265;
- 9cW. Joo, W. Wang, R. Mesch, K. Matsuzawa, D. Liu, C. G. Willson, J. Am. Chem. Soc. 2019, 141, 14736–14741.
- 10
- 10aM. Baidya, H. Mayr, Chem. Commun. 2008, 1792–1794;
- 10bJ. E. Taylor, S. D. Bull, J. M. Williams, Chem. Soc. Rev. 2012, 41, 2109–2121.
- 11J. C. Worch, C. J. Stubbs, M. J. Price, A. P. Dove, Chem. Rev. 2021, 121, 6744–6776.
- 12When using 12 % (v/v) of water, the transparent solution transformed into turbid suspension after polymerization, indicating the formation of insoluble polymers (see Figure S13).
- 13The kinetic study showed that the polymerization was completed in 1 min. However, the plot of molecular weight against conversion was nonlinear, indicating that the polymerization was uncontrolled under DBU-catalyzed conditions, which we attributed to the fast propagation process (see Figure S10).
- 14Higher temperatures (≥100 °C) would cause a decrease in the Mn of polymers, probably because of the cleavage of the C−S bond of the polymers at these temperatures, see Scheme S7 and Ref. 5b and Ref.
- 14aC. Allen, J. Fournier, W. Humphlett, Can. J. Chem. 1964, 42, 2616–2620;
- 14bC. J. Stubbs, A. L. Khalfa, V. Chiaradia, J. C. Worch, A. P. Dove, J. Am. Chem. Soc. 2022, 144, 11729–11735.
- 15
- 15aA. Duda, A. Kowalski, Thermodynamics and Kinetics of Ring-Opening Polymerization in Handbook of Ring-Opening Polymerization (Eds: P. Dubois, O. Coulembier, J.-M. Raquez), Wiley-VCH, Weinheim, Germany, 2009;
- 15bX. Zhang, M. Fevre, G. O. Jones, R. M. Waymouth, Chem. Rev. 2018, 118, 839–885;
- 15cM. Azechi, K. Matsumoto, T. Endo, J. Polym. Sci. Part A 2013, 51, 1651–1655.
- 16
- 16aC. J. Rosenker, E. H. Krenske, K. Houk, P. Wipf, Org. Lett. 2013, 15, 1076–1079;
- 16bE. H. Krenske, R. C. Petter, K. Houk, J. Org. Chem. 2016, 81, 11726–11733.
- 17
- 17aX. Zhang, X. Wang, S. Chatani, C. N. Bowman, ACS Macro Lett. 2021, 10, 84–89;
- 17bM. Claudino, X. Zhang, M. D. Alim, M. Podgorski, C. N. Bowman, Macromolecules 2016, 49, 8061–8074;
- 17cW. Xi, H. Peng, A. Aguirre-Soto, C. J. Kloxin, J. W. Stansbury, C. N. Bowman, Macromolecules 2014, 47, 6159–6165;
- 17dN. Corrigan, J. Yeow, P. Judzewitsch, J. Xu, C. Boyer, Angew. Chem. Int. Ed. 2019, 58, 5170–5189; Angew. Chem. 2019, 131, 5224–5243.
- 18
- 18aH. Yeo, A. Khan, J. Am. Chem. Soc. 2020, 142, 3479–3488;
- 18bN. Zivic, N. Sadaba, N. Almandoz, F. Ruiperez, D. Mecerreyes, H. Sardon, Macromolecules 2020, 53, 2069–2076.
- 19L.-T. T. Nguyen, M. T. Gokmen, F. E. Du Prez, Polym. Chem. 2013, 4, 5527–5536.
- 20
- 20aY. Jian, Y. He, Y. Sun, H. Yang, W. Yang, J. Nie, J. Mater. Chem. C 2013, 1, 4481–4489;
- 20bC. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540–1573; Angew. Chem. 2010, 122, 1584–1617.
- 21
- 21aK. Kim, J. Sinha, G. Gao, K. K. Childress, S. M. Sartor, A. M. Salazar, S. Huang, C. B. Musgrave, J. W. Stansbury, Macromolecules 2020, 53, 5034–5046;
- 21bJ. Sinha, M. Podgórski, A. Tomaschke, V. L. Ferguson, C. N. Bowman, Macromolecules 2020, 53, 6331–6340;
- 21cJ. Bootsma, W. R. Browne, J. Flapper, B. de Bruin, JACS Au 2022, 2, 531–540.
- 22
- 22aB. A. Abel, C. L. McCormick, Macromolecules 2016, 49, 6193–6202;
- 22bR. J. Pounder, M. J. Stanford, P. Brooks, S. P. Richards, A. P. Dove, Chem. Commun. 2008, 5158–5160.
- 23When using P3 of high molecular weight, the coupling efficiency of the thiol-maleimide reaction decreased, presumably due to the steric blocking of the polymer with a high chain length, see Ref. G. Gody, D. A. Roberts, T. Maschmeyer, S. b Perrier, J. Am. Chem. Soc. 2016, 138, 4061–4068.
- 24The shoulder peaks in the SEC curves of diblock copolymers mainly came from the slight excess reactants PEG-Mal (see Figures S42 and S43).
- 25
- 25aV. X. Truong, A. P. Dove, Angew. Chem. Int. Ed. 2013, 52, 4132–4136; Angew. Chem. 2013, 125, 4226–4230;
- 25bK. Kempe, A. Krieg, C. R. Becer, U. S. Schubert, Chem. Soc. Rev. 2012, 41, 176–191;
- 25cJ. Escorihuela, A. T. Marcelis, H. Zuilhof, Adv. Mater. Interfaces 2015, 2, 1500135;
- 25dV. S. Khire, T. Y. Lee, C. N. Bowman, Macromolecules 2007, 40, 5669–5677.
- 26
- 26aJ. M. Sarapas, G. N. Tew, Angew. Chem. Int. Ed. 2016, 55, 15860–15863; Angew. Chem. 2016, 128, 16092–16095;
- 26bL. Infante Teixeira, K. Landfester, H. Thérien-Aubin, Macromolecules 2021, 54, 3659–3667;
- 26cX. Yang, W. Zhang, H.-Y. Huang, J. Dai, M.-Y. Wang, H.-Z. Fan, Z. Cai, Q. Zhang, J.-B. Zhu, Macromolecules 2022, 55, 2777–2786.
- 27When DMF was used as the eluent, the testing Mn of P3-O2 was relatively higher than that of parent polymer P3. In addition, the molecular weight tested by light-scattering for both polymers was similar (see Figures S45 and S46).
- 28
- 28aY.-L. Zhao, W. H. Jones, F. Monnat, F. Wudl, K. Houk, Macromolecules 2005, 38, 10279–10285;
- 28bN. Tanaka, E. Sato, A. Matsumoto, Macromolecules 2011, 44, 9125–9137;
- 28cD. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019, 119, 8701–8780.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.