New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm−1 for All-Solid-State Batteries
Corresponding Author
Yoshiaki Tanaka
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKoki Ueno
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKeita Mizuno
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKaori Takeuchi
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorTetsuya Asano
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorAkihiro Sakai
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorCorresponding Author
Yoshiaki Tanaka
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKoki Ueno
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKeita Mizuno
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorKaori Takeuchi
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorTetsuya Asano
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorAkihiro Sakai
Technology Division, Applied Material Technology Center, Panasonic Holdings Corporation, 1006 Kadoma, Kadoma City, Osaka, 571-8501 Japan
Search for more papers by this authorAbstract
All-solid-state batteries (ASSBs) with inorganic solid electrolytes (SEs) have attracted significant interest as next-generation energy storage. Halides such as Li3YCl6 are promising candidates for SE because they combine high oxidation stability and deformability. However, the ionic conductivities of halide SEs are not as high as those of other SEs, especially sulfides. Here, we discover new lithium-metal-oxy-halide materials, LiMOCl4 (M=Nb, Ta). They exhibit extremely high ionic conductivities of 10.4 mS cm−1 for M=Nb and 12.4 mS cm−1 for M=Ta, respectively, even in cold-pressed powder forms at room temperature, which are comparable to or surpass those of organic liquid electrolytes used in lithium-ion batteries. Bulk-type ASSB cells using the oxyhalides as the cathode SE demonstrate an outstanding rate capability with a capacity retention of 80 % at 5 C/0.1 C. We believe that the proposed oxyhalides are promising SE candidates for the practical applications of ASSBs.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217581-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.
- 2A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103–16118.
- 3Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030.
- 4
- 4aF. Ma, E. Zhao, S. Zhu, W. Yan, D. Sun, Y. Jin, C. Nan, Solid State Ionics 2016, 295, 7–12;
- 4bZ. Huang, L. Chen, B. Huang, B. Xu, G. Shao, H. Wang, Y. Li, C.-A. Wang, ACS Appl. Mater. Interfaces 2020, 12, 56118–56125.
- 5
- 5aF. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, Adv. Mater. 2005, 17, 918–921;
- 5bN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682–686;
- 5cF. Han, T. Gao, Y. Zhu, K. J. Gaskell, C. Wang, Adv. Mater. 2015, 27, 3473–3483.
- 6S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, D. Arunkumar, N. Kuwata, J. Kawamura, S. Orimo, Nat. Commun. 2019, 10, 1081.
- 7T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, A. Hasegawa, Adv. Mater. 2018, 30, 1803075.
- 8X. Li, J. Liang, X. Yang, K. R. Adair, C. Wang, F. Zhao, X. Sun, Energy Environ. Sci. 2020, 13, 1429–1461.
- 9S. Wang, Q. Bai, A. M. Nolan, Y. Liu, S. Gong, Q. Sun, Y. Mo, Angew. Chem. Int. Ed. 2019, 58, 8039–8043; Angew. Chem. 2019, 131, 8123–8127.
- 10L. Zhou, T. T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek, L. F. Nazar, Nat. Energy 2022, 7, 83–93.
- 11Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026–1031.
- 12H. Kageyama, K. Hayashi, K. Maeda, J. P. Attfield, Z. Hiroi, J. M. Rondinelli, K. R. Poeppelmeier, Nat. Commun. 2018, 9, 772.
- 13L. Pauling, J. Am. Chem. Soc. 1929, 51, 1010.
- 14
- 14aY. Zhao, L. L. Daemen, J. Am. Chem. Soc. 2012, 134, 15042–15047;
- 14bM. Braga, J. A. Ferreira, V. Stockhausen, J. Oliveira, A. El-Azab, J. Mater. Chem. A 2014, 2, 5470–5480;
- 14cS. Li, J. Zhu, Y. Wang, J. W. Howard, X. Lü, Y. Li, R. S. Kumar, L. Wang, L. L. Daemen, Y. Zhao, Solid State Ionics 2016, 284, 14–19;
- 14dZ. Deng, D. Ni, D. Chen, Y. Bian, S. Li, Z. Wang, Y. Zhao, InfoMat 2021, 4, e12252.
- 15G. Hautier, A. Jain, S. P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, Chem. Mater. 2011, 23, 3495–3508.
- 16K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 17A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, E. J. Reed, Energy Environ. Sci. 2017, 10, 306–320.
- 18T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 2012, 149, 134–141.
- 19M. T. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F. N. Sayed, K. Kato, J. Joyner, P. M. Ajayan, Nat. Energy 2017, 2, 17108.
- 20
- 20aX. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, Angew. Chem. Int. Ed. 2019, 58, 16427–16432; Angew. Chem. 2019, 131, 16579–16584;
- 20bJ. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012–7022.
- 21P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, L. F. Nazar, Angew. Chem. Int. Ed. 2019, 58, 8681–8686; Angew. Chem. 2019, 131, 8773–8778.
- 22P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler, J. J. Immel, S. G. Greenbaum, A. S. Gozdz, J. Power Sources 1999, 81, 739–747.
- 23Z. Zhu, I. Chu, Z. Deng, S. P. Ong, Chem. Mater. 2015, 27, 8318–832.
- 24D. A. Keen, J. Phys. Condens. Matter 2002, 14, R819.
- 25D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. Marple, J. M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, ACS Energy Lett. 2019, 4, 2418–2427.
- 26W. Zhang, T. Leichtweiß, S. P. Culver, R. Koerver, D. Das, D. A. Weber, W. G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 2017, 9, 35888–35896.
- 27W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, G. Ceder, Chem. Mater. 2016, 28, 266–273.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.