Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Atomically Dispersed Sn Protuberance
Dr. Lijuan Zhang
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006 China
These authors contributed equally to this work.
Search for more papers by this authorHanfeng Zhou
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xiaoju Yang
School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shengbo Zhang
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
Search for more papers by this authorProf. Haimin Zhang
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
Search for more papers by this authorXuan Yang
School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074 China
Search for more papers by this authorProf. Xintai Su
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiangwei Zhang
Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Prof. Zhang Lin
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorDr. Lijuan Zhang
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006 China
These authors contributed equally to this work.
Search for more papers by this authorHanfeng Zhou
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xiaoju Yang
School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Shengbo Zhang
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
Search for more papers by this authorProf. Haimin Zhang
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences (China)
Search for more papers by this authorXuan Yang
School of Chemistry and Chemical Engineering, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074 China
Search for more papers by this authorProf. Xintai Su
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiangwei Zhang
Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 China
Search for more papers by this authorCorresponding Author
Prof. Zhang Lin
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorAbstract
Atomically dispersed metal catalysts show potential advantages in N2 reduction reaction (NRR) due to their excellent activity and efficient metal utilization. Unfortunately, the reported catalysts usually exhibit unsatisfactory NRR activity due to their poor N2 adsorption and activation. Herein, we report a novel Sn atomically dispersed protuberance (ADP) by coordination with substrate C and O to induce positive charge accumulation on Sn site for improving its N2 adsorption, activation and NRR performance. The extended X-ray absorption fine structure (EXAFS) spectra confirmed the local coordination structure of the Sn ADPs. NRR activity was significantly promoted via Sn ADPs, exhibiting a remarkable NH3 yield (RNH3) of 28.3 μg h−1 mgcat−1 (7447 μg h−1 mgSn−1) at −0.3 V. Furthermore, the enhanced N2Hx intermediates was verified by in situ experiments, yielding consistent results with DFT calculation. This work opens a new avenue to regulate the activity and selectivity of N2 fixation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217473-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48, 5658–5716;
- 1bC. Tang, S.-Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166–3180.
- 2
- 2aH. Shen, C. Choi, J. Masa, X. Li, J. Qiu, Y. Jung, Z. Sun, Chem 2021, 7, 1708–1754;
- 2bB. H. R. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nat. Catal. 2019, 2, 290–296.
- 3S. Zhang, M. Jin, T. Shi, M. Han, Q. Sun, Y. Lin, Z. Ding, L. R. Zheng, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Angew. Chem. Int. Ed. 2020, 59, 13423–13429; Angew. Chem. 2020, 132, 13525–13531.
- 4X. Guo, S. Huang, Electrochim. Acta 2018, 284, 392–399.
- 5
- 5aM. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Commun. 2019, 10, 341;
- 5bJ. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480–12487;
- 5cX. Zhang, A. Chen, Z. Zhang, Z. Zhou, J. Mater. Chem. A 2018, 6, 18599–18604;
- 5dW. Zang, T. Yang, H. Zou, S. Xi, H. Zhang, X. Liu, Z. Kou, Y. Du, Y. P. Feng, L. Shen, L. Duan, J. Wang, S. J. Pennycook, ACS Catal. 2019, 9, 10166–10173.
- 6D. L. J. Broere, P. L. Holland, Science 2018, 359, 871–871.
- 7L. Shi, Q. Li, C. Ling, Y. Zhang, Y. Ouyang, X. Bai, J. Wang, J. Mater. Chem. A 2019, 7, 4865–4871.
- 8L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren, Z. Liang, J. A. Boscoboinik, A. Hunt, I. Waluyo, S. Zhang, L. Zhuo, J. Song, X. Liu, J. Luo, H. L. Xin, ACS Catal. 2021, 11, 509–516.
- 9
- 9aP. P. Power, Nature 2010, 463, 171–177;
- 9bY. Sun, Y. Wang, H. Li, W. Zhang, X.-M. Song, D.-M. Feng, X. Sun, B. Jia, H. Mao, T. Ma, J. Energy Chem. 2021, 62, 51–70.
- 10
- 10aE. Dražević, E. Skúlason, iScience 2020, 23, 101803;
- 10bL. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S.-Z. Qiao, ACS Catal. 2019, 9, 2902–2908.
- 11
- 11aX. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2018, 2, 1610–1622;
- 11bC. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, Y. Li, S. Wang, Small 2019, 15, 1805029.
- 12M. Li, Y. Cui, L. Sun, X. Zhang, L. Peng, Y. Huang, Inorg. Chem. 2020, 59, 4858–4867.
- 13C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 2018, 140, 14161–14168.
- 14Z. Feng, Y. Tang, W. Chen, D. Wei, Y. Ma, X. Dai, J. Mol. Catal. 2020, 483, 110705.
- 15
- 15aC. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 2018, 8, 7517–7525;
- 15bA. R. Singh, B. A. Rohr, M. J. Statt, J. A. Schwalbe, M. Cargnello, J. K. Nørskov, ACS Catal. 2019, 9, 8316–8324.
- 16Y. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. Xiong, Adv. Mater. 2021, 33, 2100429.
- 17
- 17aY. Li, J. Li, J. Huang, J. Chen, Y. Kong, B. Yang, Z. Li, L. Lei, G. Chai, Z. Wen, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 2021, 60, 9078–9085; Angew. Chem. 2021, 133, 9160–9167;
- 17bW. Zhao, L. Zhang, Q. Luo, Z. Hu, W. Zhang, S. Smith, J. Yang, ACS Catal. 2019, 9, 3419–3425.
- 18
- 18aS. D. Minteer, P. Christopher, S. Linic, ACS Energy Lett. 2019, 4, 163–166;
- 18bM.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.
- 19S. K. Gupta, Y. Mao, J. Phys. Chem. C 2021, 125, 6508–6533.
- 20Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, Nat. Commun. 2021, 12, 2870.
- 21M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 22A. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235–246.
- 23F. Luo, A. Roy, L. Silvioli, D. A. Cullen, A. Zitolo, M. T. Sougrati, I. C. Oguz, T. Mineva, D. Teschner, S. Wagner, J. Wen, F. Dionigi, U. I. Kramm, J. Rossmeisl, F. Jaouen, P. Strasser, Nat. Mater. 2020, 19, 1215–1223.
- 24S. Yang, Y. Chen, C. Jiang, InfoMat 2021, 3, 397–420.
- 25X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800369.
- 26L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.
- 27
- 27aL. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, Angew. Chem. Int. Ed. 2019, 58, 2321–2325; Angew. Chem. 2019, 131, 2343–2347;
- 27bQ. Qin, T. Heil, M. Antonietti, M. Oschatz, Small Methods 2018, 2, 1800202;
- 27cY. Liu, Q. Xu, X. Fan, X. Quan, Y. Su, S. Chen, H. Yu, Z. Cai, J. Mater. Chem. A 2019, 7, 26358–26363;
- 27dX. Wang, W. Wang, M. Qiao, G. Wu, W. Chen, T. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang, J. Wang, J. Ge, X. Hong, Y. Li, Y. Wu, Y. Li, Sci. Bull. 2018, 63, 1246–1253;
- 27eL. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am. Chem. Soc. 2019, 141, 10677–10683;
- 27fH. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019, 5, 204–214.
- 28
- 28aY. Yao, S. Zhu, H. Wang, H. Li, M. Shao, Angew. Chem. Int. Ed. 2020, 59, 10479–10483; Angew. Chem. 2020, 132, 10565–10569;
- 28bY. Yao, S. Zhu, H. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140, 1496–1501;
- 28cY. Yao, H. Wang, X.-z. Yuan, H. Li, M. Shao, ACS Energy Lett. 2019, 4, 1336–1341.
- 29J.-C. Liu, X.-L. Ma, Y. Li, Y.-G. Wang, H. Xiao, J. Li, Nat. Commun. 2018, 9, 1610.
- 30X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709–5721.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.