Super-Resolution Tension PAINT Imaging with a Molecular Beacon
Dr. Seong Ho Kim
Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Isaac T. S. Li
Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7 Canada
Search for more papers by this authorDr. Seong Ho Kim
Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7 Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Isaac T. S. Li
Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7 Canada
Search for more papers by this authorAbstract
DNA-PAINT enabled super-resolution imaging through the transient binding of fluorescently-labelled single-stranded DNA (ssDNA) imagers to target ssDNA. However, its performance is constrained by imager background fluorescence, resulting in relatively long image acquisition and potential artifacts. We designed a molecular beacon (MB) as the PAINT imager. Unbound MB in solution reduces the background fluorescence due to its natively quenched state. They are fluorogenic upon binding to target DNA to create individual fluorescence events. We demonstrate that MB-PAINT provides localization precision similar to traditional linear imager DNA-PAINT. We also show that MB-PAINT is ideally suited for fast super-resolution imaging of molecular tension probes in living cells, eliminating the potential of artifacts from free-diffusing imagers in traditional DNA-PAINT at the cell-substrate interface.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217028-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Schnitzbauer, M. T. Strauss, T. Schlichthaerle, F. Schueder, R. Jungmann, Nat. Protoc. 2017, 12, 1198–1228.
- 2M. Lelek, M. T. Gyparaki, G. Beliu, F. Schueder, J. Griffié, S. Manley, R. Jungmann, M. Sauer, M. Lakadamyali, C. Zimmer, Nat. Rev. Methods Primers 2021, 1, 39.
- 3S. Strauss, R. Jungmann, Nat. Methods 2020, 17, 789–791.
- 4F. Schueder, J. Stein, F. Stehr, A. Auer, B. Sperl, M. T. Strauss, P. Schwille, R. Jungmann, Nat. Methods 2019, 16, 1101–1104.
- 5O. K. Wade, J. B. Woehrstein, P. C. Nickels, S. Strauss, F. Stehr, J. Stein, F. Schueder, M. T. Strauss, M. Ganji, J. Schnitzbauer, H. Grabmayr, P. Yin, P. Schwille, R. Jungmann, Nano Lett. 2019, 19, 2641–2646.
- 6A. Auer, M. T. Strauss, T. Schlichthaerle, R. Jungmann, Nano Lett. 2017, 17, 6428–6434.
- 7J. Lee, S. Park, W. Kang, S. Hohng, Mol Brain 2017, 10, 63.
- 8A. H. Clowsley, W. T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, Nat. Commun. 2021, 12, 501.
- 9K. K. H. Chung, Z. Zhang, P. Kidd, Y. Zhang, N. D. Williams, B. Rollins, Y. Yang, C. Lin, D. Baddeley, J. Bewersdorf, Nat. Methods 2022, 19, 554–559.
- 10K. K. Narayanasamy, J. V. Rahm, S. Tourani, M. Heilemann, Nat. Commun. 2022, 13, 5047.
- 11H. J. Geertsema, G. Aimola, V. Fabricius, J. P. Fuerste, B. B. Kaufer, H. Ewers, Nat. Biotechnol. 2021, 39, 551–554.
- 12M. Filius, T. J. Cui, A. N. Ananth, M. W. Docter, J. W. Hegge, J. van der Oost, C. Joo, Nano Lett. 2020, 20, 2264–2270.
- 13C. K. Choi, M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, A. R. Horwitz, Nat. Cell Biol. 2008, 10, 1039–1050.
- 14F. Kong, A. J. García, A. P. Mould, M. J. Humphries, C. Zhu, J. Cell Biol. 2009, 185, 1275–1284.
- 15M. E. Chicurel, C. S. Chen, D. E. Ingber, Curr. Opin. Cell Biol. 1998, 10, 232–239.
- 16E. A. Evans, D. A. Calderwood, Science 2007, 316, 1148–1153.
- 17J. Y.-J. Shyy, S. Chien, Circ. Res. 2002, 91, 769–775.
- 18A. S. Menko, D. Boettiger, Cell 1987, 51, 51–57.
- 19Y. Zhang, C. Ge, C. Zhu, K. Salaita, Nat. Commun. 2014, 5, 5167.
- 20T. Schlichthaerle, C. Lindner, R. Jungmann, Nat. Commun. 2021, 12, 2510.
- 21A. Blanchard, J. D. Combs, J. M. Brockman, A. V. Kellner, R. Glazier, H. Su, R. L. Bender, A. S. Bazrafshan, W. Chen, M. E. Quach, R. Li, A. L. Mattheyses, K. Salaita, Nat. Commun. 2021, 12, 4693.
- 22J. M. Brockman, H. Su, A. T. Blanchard, Y. Duan, T. Meyer, M. E. Quach, R. Glazier, A. Bazrafshan, R. L. Bender, A. V. Kellner, H. Ogasawara, R. Ma, F. Schueder, B. G. Petrich, R. Jungmann, R. Li, A. L. Mattheyses, Y. Ke, K. Salaita, Nat. Methods 2020, 17, 1018–1024.
- 23S. Tyagi, F. R. Kramer, Nat. Biotechnol. 1996, 14, 303–308.
- 24S. A. E. Marras, F. R. Kramer, S. Tyagi, Nucleic Acids Res. 2002, 30, 122e.
- 25M. Chen, Z. Ma, X. Wu, S. Mao, Y. Yang, J. Tan, C. J. Krueger, A. K. Chen, Sci. Rep. 2017, 7, 1550.
- 26H. Wu, T.-T. Chen, X.-N. Wang, Y. Ke, J.-H. Jiang, Chem. Sci. 2020, 11, 62–69.
- 27S. Mao, Y. Ying, R. Wu, A. K. Chen, iScience 2020, 23, 101801.
- 28G. Goel, A. Kumar, A. K. Puniya, W. Chen, K. Singh, J. Appl. Microbiol. 2005, 99, 435–442.
- 29J. F. Hopkins, S. A. Woodson, Nucleic Acids Res. 2005, 33, 5763–5770.
- 30A. Tsourkas, M. A. Behlke, S. D. Rose, G. Bao, Nucleic Acids Res. 2003, 31, 1319–1330.
- 31A. Tsourkas, M. A. Behlke, G. Bao, Nucleic Acids Res. 2002, 30, 4208–4215.
- 32R. Jungmann, C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, F. C. Simmel, Nano Lett. 2010, 10, 4756–4761.
- 33R. Jungmann, M. S. Avendaño, J. B. Woehrstein, M. Dai, W. M. Shih, P. Yin, Nat. Methods 2014, 11, 313–318.
- 34U. Endesfelder, S. Malkusch, F. Fricke, M. Heilemann, Histochem. Cell Biol. 2014, 141, 629–638.
- 35M. Spiess, P. Hernandez-Varas, A. Oddone, H. Olofsson, H. Blom, D. Waithe, J. G. Lock, M. Lakadamyali, S. Strömblad, J. Cell Biol. 2018, 217, 1929–1940.
- 36Y. Zhao, Y. Wang, A. Sarkar, X. Wang, iScience 2018, 9, 502–512.
- 37T. Nishizaka, Q. Shi, M. P. Sheetz, Proc. Natl. Acad. Sci. USA 2000, 97, 692–697.
- 38N. Nishiya, W. B. Kiosses, J. Han, M. H. Ginsberg, Nat. Cell Biol. 2005, 7, 343–352.
- 39J. Elf, G.-W. Li, X. S. Xie, Science 2007, 316, 1191–1194.
- 40J. Schnitzbauer, Y. Wang, S. Zhao, M. Bakalar, T. Nuwal, B. Chen, B. Huang, Proc. Natl. Acad. Sci. USA 2018, 115, 3219–3224.
- 41J. Li, T. A. Springer, Proc. Natl. Acad. Sci. USA 2017, 114, 4685–4690.
- 42X.-P. Xu, E. Kim, M. Swift, J. W. Smith, N. Volkmann, D. Hanein, Biophys. J. 2016, 110, 798–809.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.