Constructing Mechanical Shuttles in a Three-dimensional (3D) Porous Architecture for Selective Transport of Lithium Ions
Xianghui Ruan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorCheng Zhang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYuzhang Zhu
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorFuli Cai
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorYajie Yang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorJiahui Feng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorXujiao Ma
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorYue Zheng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorHuanhuan Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Ye Yuan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Guangshan Zhu
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorXianghui Ruan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorCheng Zhang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorYuzhang Zhu
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 China
Search for more papers by this authorFuli Cai
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorYajie Yang
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorJiahui Feng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorXujiao Ma
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorYue Zheng
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorHuanhuan Li
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Ye Yuan
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Guangshan Zhu
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024 China
Search for more papers by this authorAbstract
Lithium (Li) extraction from brines is a major barrier to the sustainable development of batteries and alloys; however, current separation technology suffers from a trade-off between ion selectivity and permeability. Herein, a crown ether mechanically interlocked 3D porous organic framework (Crown-POF) was prepared as the porous filler of thin-film nanocomposite membranes. Crown-POF with penta-coordinated (four Ocrown atoms and one Ntert-amine atom) adsorption sites enables a special recognition for Li+ ion. Moreover, the four Ntert-amine atoms on each POF branch facilitate the flipping motion of Li+ ion along the skeletal thread, while retaining the specified binding pattern. Accordingly, the crown ether interlocked POF network displays an ultrafast ion transfer rate, over 10 times that of the conventional porous materials. Notably, the nanocomposite membrane gives high speed and selectivity for Li+ ion transport as compared with other porous solid-based mixed-matrix membranes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article. Experimental procedures and characterization data including Figures S1–S29 and Table S1–S5.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216549-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561;
- 1bJ. Cookson, Br. J. Psychiat. 2001, 178, 148–156;
- 1cJ. K. Rybakowski, Drug Dev. Res. 2021, 82, 621–627;
- 1dI. E. Lyublinski, A. V. Vertkov, V. A. Evtikhin, Plasma Devices Oper. 2009, 17, 42–72.
- 2J. Hou, H. C. Zhang, A. W. Thornton, A. J. Hill, H. T. Wang, K. Konstas, Adv. Funct. Mater. 2021, 31, 2105991.
- 3
- 3aT. R. Hawkins, O. M. Gausen, A. H. Strømman, Int. J. Life Cycle Assess. 2012, 17, 997–1014;
- 3bC. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, B. Steubing, Commun. Mater. 2020, 1, 99.
- 4
- 4aC. Grosjean, P. H. Miranda, M. Perrin, P. Poggi, Renewable Sustainable Energy Rev. 2012, 16, 1735–1744;
- 4bJ. D. Ying, M. J. Luo, Y. Jin, J. G. Yu, Desalination 2020, 492, 114621.
- 5
- 5aV. Flexer, C. F. Baspineiro, C. I. Galli, Sci. Total Environ. 2018, 639, 1188–1204;
- 5bJ. L. Lang, Y. Jin, K. Liu, Y. Z. Long, H. T. Zhang, L. H. Qi, H. Wu, Y. Cui, Nat. Sustainability 2020, 3, 386–390;
- 5cA. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 2022, 528, 115611.
- 6
- 6aJ. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew. Chem. Int. Ed. 2017, 56, 9292–9310; Angew. Chem. 2017, 129, 9420–9439;
- 6bL. M. Robeson, J. Membr. Sci. 2008, 320, 390–400;
- 6cY. Z. Zhu, W. Xie, S. J. Gao, F. Zhang, W. B. Zhang, Z. Y. Liu, J. Jin, Small 2016, 12, 5034–5041;
- 6dR. Wang, J. Zhang, C. Y. Tang, S. Lin, Environ. Sci. Technol. 2022, 56, 2605–2616;
- 6eH. Zhang, X. Li, J. Hou, L. Jiang, H. Wang, Chem. Soc. Rev. 2022, 51, 2224–2254;
- 6fJ. Hou, H. Zhang, G. P. Simon, H. Wang, Adv. Mater. 2020, 32, 1902009.
- 7
- 7aY. Cheng, Y. Ying, S. Japip, S. D. Jiang, T. S. Chung, S. Zhang, D. Zhao, Adv. Mater. 2018, 30, 1802401;
- 7bZ. Y. Wang, W. Zhang, S. Lin, H. Jin, S. J. Gao, Y. Z. Zhu, J. Jin, Nat. Commun. 2018, 9, 2004;
- 7cY. Wen, R. Dai, X. Li, X. Zhang, X. Cao, Z. Wu, S. Lin, C. Y. Tang, Z. Wang, Sci. Adv. 2022, 8, eabm4149.
- 8J. Wang, Y. Wang, Y. Zhang, A. Uliana, J. Zhu, J. Liu, ACS Appl. Mater. Interfaces 2016, 8, 25508–25519.
- 9J. Yin, G. C. Zhu, B. L. Deng, Desalination 2016, 379, 93–101.
- 10M. Amini, M. Jahanshahi, A. Rahimpour, J. Membr. Sci. 2013, 435, 233–241.
- 11
- 11aS. Sorribas, P. Gorgojo, C. Tellez, J. Coronas, A. G. Livingston, J. Am. Chem. Soc. 2013, 135, 15201–15208;
- 11bF. Yang, H. Sadam, Y. Q. Zhang, J. Z. Xia, X. B. Yang, J. Long, S. W. Li, L. Shao, Chem. Eng. Sci. 2020, 225, 115845.
- 12
- 12aD. L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, T. S. Chung, Water Res. 2020, 173, 115557;
- 12bQ. Shen, Y. Q. Lin, P. F. Zhang, J. P. Segawa, Y. D. Jia, T. Istirokhatun, X. Z. Cao, K. Guan, H. Matsuyama, J. Membr. Sci. 2021, 635, 119498;
- 12cV. Sharma, G. Borkute, S. P. Gumfekar, Chem. Eng. J. 2022, 433, 133823.
- 13
- 13aJ. P. Morth, B. P. Pedersen, M. S. Toustrup-Jensen, T. L. Sorensen, J. Petersen, J. P. Andersen, B. Vilsen, P. Nissen, Nature 2007, 450, 1043–1049;
- 13bJ. Payandeh, T. Scheuer, N. Zheng, W. A. Catterall, Nature 2011, 475, 353–358.
- 14
- 14aY. F. Zhou, J. H. MoraisCabral, A. Kaufman, R. MacKinnon, Nature 2001, 414, 43–48;
- 14bW. Kopec, D. A. Kopfer, O. N. Vickery, A. S. Bondarenko, T. L. C. Jansen, B. L. De-Groot, U. Zachariae, Nat. Chem. 2018, 10, 813–820.
- 15
- 15aM. Ali, I. Ahmed, P. Ramirez, S. Nasir, S. Mafe, C. M. Niemeyer, W. Ensinger, Anal. Chem. 2018, 90, 6820–6826;
- 15bY. Zhao, M. Y. Wu, P. X. Shen, C. Uytterhoeven, N. Mamrol, J. N. Shen, C. J. Gao, B. Van der Bruggen, J. Membr. Sci. 2021, 618, 118668.
- 16
- 16aZ. Zhang, X. Shi, R. Wang, A. Xiao, Y. Wang, Chem. Sci. 2019, 10, 9077–9083;
- 16bX. Y. He, Y. Yang, H. Wu, G. W. He, Z. X. Xu, Y. Kong, L. Cao, B. B. Shi, Z. J. Zhang, C. Tongsh, K. Jiao, K. Y. Zhu, Z. Y. Jiang, Adv. Mater. 2020, 32, 2001284;
- 16cL. Y. Chen, Y. N. Gai, X. T. Gai, J. Qin, Z. G. Wang, L. S. Cui, H. Guo, M. Y. Jiang, Q. Zou, T. Zhou, J. G. Gai, Chem. Eng. J. 2022, 430, 133024.
- 17
- 17aY. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336–16339;
- 17bC. Yuan, W. Jia, Z. Yu, Y. Li, M. Zi, L. M. Yuan, Y. Cui, J. Am. Chem. Soc. 2022, 144, 891–900;
- 17cA. A. Uliana, N. T. Bui, J. Kamcev, M. K. Taylor, J. J. Urban, J. R. Long, Science 2021, 372, 296–299;
- 17dA. V. Bavykina, M. G. Goesten, F. Kapteijn, M. Makkee, J. Gascon, ChemSusChem 2015, 8, 809–812;
- 17eA. I. Cooper, ACS Cent. Sci. 2017, 3, 544–553;
- 17fW. Liang, F. Carraro, M. B. Solomon, S. G. Bell, H. Amenitsch, C. J. Sumby, N. G. White, P. Falcaro, C. J. Doonan, J. Am. Chem. Soc. 2019, 141, 14298–14305;
- 17gZ. Y. Wang, Q. H. Meng, R. C. Ma, Z. K. Wang, Y. J. Yang, H. Y. Sha, X. J. Ma, X. H. Ruan, X. Q. Zou, Y. Yuan, G. S. Zhu, Chem 2020, 6, 1683–1691;
- 17hG. Das, S. K. Sharma, T. Prakasam, F. Gándara, R. Mathew, N. Alkhatib, N. I. Saleh, R. Pasricha, J. C. Olsen, M. Baias, S. Kirmizialtin, R. Jagannathan, A. Trabolsi, Commun. Chem. 2019, 2, 106;
- 17iB. Colasson, T. Devic, J. Gaubicher, C. Martineau-Corcos, P. Poizot, S. V. Arou-Kanian, Chem. Eur. J. 2021, 27, 9589–9596.
- 18G. J. Davidson, S. Sharma, S. J. Loeb, Angew. Chem. Int. Ed. 2010, 49, 4938–4942; Angew. Chem. 2010, 122, 5058–5062.
- 19X. H. Ruan, Y. J. Yang, W. X. Liu, X. J. Ma, C. Zhang, Q. H. Meng, Z. Y. Wang, F. C. Cui, J. H. Feng, F. L. Cai, Y. Yuan, G. S. Zhu, ACS Cent. Sci. 2021, 7, 1698–1706.
- 20X. Y. Guan, Y. C. Ma, H. Li, Y. Yusran, M. Xue, Q. R. Fang, Y. S. Yan, V. Valtchev, S. L. Qiu, J. Am. Chem. Soc. 2018, 140, 4494–4498.
- 21N. Li, F. Chen, J. Shen, H. Zhang, T. Wang, R. Ye, T. Li, T. P. Loh, Y. Y. Yang, H. Zeng, J. Am. Chem. Soc. 2020, 142, 21082–21090.
- 22
- 22aF. Gingl, W. Hiller, J. Strähle, H. Borgholte, K. Dehnjcke, Z. Anorg. Allg. Chem. 1991, 606, 91–96;
- 22bP. P. Philip, X. J. Xu, J. Chem. Soc. Chem. Commun. 1984, 6, 358–359.
- 23
- 23aY. Huang, R. Wang, J. Cleaner Prod. 2018, 205, 201–209;
- 23bH. C. Pei, F. Yan, H. Liu, T. L. Li, M. X. Wang, J. X. Li, X. H. Ma, Z. Y. Cui, B. Q. He, J. Taiwan Inst. Chem. E. 2019, 97, 496–502.
- 24
- 24aS. J. Chen, Y. H. Wang, T. Nie, C. Y. Bao, C. X. Wang, T. Y. Xu, Q. N. Lin, D. H. Qu, X. Y. Gong, Y. Yang, L. Y. Zhu, H. Tian, J. Am. Chem. Soc. 2018, 140, 17992–17998;
- 24bC. X. Wang, S. K. Wang, H. T. Yang, Y. X. Xiang, X. B. Wang, C. Y. Bao, L. Y. Zhu, H. Tian, D. H. Qu, Angew. Chem. Int. Ed. 2021, 60, 14836–14840; Angew. Chem. 2021, 133, 14962–14966.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.