A Melt-Quenched Luminescent Glass of an Organic–Inorganic Manganese Halide as a Large-Area Scintillator for Radiation Detection
Jian-Bin Luo
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJun-Hua Wei
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Zhi-Zhong Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZi-Lin He
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dai-Bin Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJian-Bin Luo
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJun-Hua Wei
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Zhi-Zhong Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZi-Lin He
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dai-Bin Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorAbstract
Glass is a group of materials with appealing qualities, including simplicity in fabrication, durability, and high transparency, and they play a crucial role in the optics field. In this paper, a new organic–inorganic metal halide luminescent glass exhibiting >78 % transmittance at 506–800 nm range together with a high photoluminescence quantum yield (PLQY) of 28.5 % is reported through a low-temperature melt-quenching approach of pre-synthesized (HTPP)2MnBr4 (HTPP=hexyltriphenylphosphonium) single crystal. Temperature-dependent X-ray diffraction, polarizing microscopy, and molecular dynamics simulations were combined to investigate the glass-crystal interconversion process, revealing the disordered nature of the glassy state. Benefiting from the transparent nature, (HTPP)2MnBr4 glass yields an outstanding spatial resolution of 10 lp mm−1 for X-ray imaging. The superb optical properties and facility of large-scale fabrication distinguish the organic–inorganic metal halide glass as a highly promising class of materials for optical devices.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216504-sup-0001-misc_information.pdf5.2 MB | Supporting Information |
ange202216504-sup-0001-SI_A22022102A0147-CCDC2214302.cif1.1 MB | Supporting Information |
ange202216504-sup-0001-SI_Supplementary_Video_1_Glass_sample_melting.mp420.2 MB | Supporting Information |
ange202216504-sup-0001-SI_Supplementary_Video_2_700K_simulation.mpg8.4 MB | Supporting Information |
ange202216504-sup-0001-SI_Supplementary_Video_3_1500K_simulation.mpg12 MB | Supporting Information |
ange202216504-sup-0001-SI_Supplementary_Video_4_2000K_simulation.mpg10.8 MB | Supporting Information |
ange202216504-sup-0001-SI_Supplementary_Video_5_300K_quench_simulation.mpg8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y.-T. Cheng, W. L. Johnson, Science 1987, 235, 997–1002.
- 2E. D. Zanotto, J. C. Mauro, J. Non-Cryst. Solids 2017, 471, 490–495.
- 3International ASTM, Annual Book of ASTM Standards, Vol. 15.02, American Society for Testing and Materials, West Conshohocken, 2022, C162-05(2015).
- 4J. E. Shelby, Introduction to Glass Science and Technology, 3rd ed., Royal Society of Chemistry, London, 2020, p. 3.
- 5G. Kumar, A. Desai, J. Schroers, Adv. Mater. 2011, 23, 461–476.
- 6W. Klement, R. Willens, P. Duwez, Nature 1960, 187, 869–870.
- 7L. Zhong, J. Wang, H. Sheng, Z. Zhang, S. X. Mao, Nature 2014, 512, 177–180.
- 8M. X. Li, S. F. Zhao, Z. Lu, A. Hirata, P. Wen, H. Y. Bai, M. Chen, J. Schroers, Y. Liu, W. H. Wang, Nature 2019, 569, 99–103.
- 9J. Hou, M. L. Rios Gomez, A. Krajnc, A. McCaul, S. Li, A. M. Bumstead, A. F. Sapnik, Z. Deng, R. Lin, P. A. Chater, D. S. Keeble, D. A. Keen, D. Appadoo, B. Chan, V. Chen, G. Mali, T. D. Bennett, J. Am. Chem. Soc. 2020, 142, 3880–3890.
- 10J. Hou, P. Chen, A. Shukla, A. Krajnc, T. Wang, X. Li, R. Doasa, L. H. Tizei, B. Chan, D. N. Johnstone, Science 2021, 374, 621–625.
- 11M. I. Saidaminov, O. F. Mohammed, O. M. Bakr, ACS Energy Lett. 2017, 2, 889–896.
- 12M. Li, Z. Xia, Chem. Soc. Rev. 2021, 50, 2626–2662.
- 13X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 2022, 375, 434–437.
- 14L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 5404.
- 15J. X. Gao, W. Y. Zhang, Z. G. Wu, Y. X. Zheng, D. W. Fu, J. Am. Chem. Soc. 2020, 142, 4756–4761.
- 16D. Zhang, Q. Zhang, B. Ren, Y. Zhu, M. Abdellah, Y. Fu, B. Cao, C. Wang, L. Gu, Y. Ding, K.-H. Tsui, S. Fan, S. Poddar, L. Shu, Y. Zhang, D.-B. Kuang, J.-F. Liao, Y. Lu, K. Zheng, Z. He, Z. Fan, Nat. Photonics 2022, 16, 284–290.
- 17M. Chen, S. Hu, Z. Zhou, N. Huang, S. Lee, Y. Zhang, R. Cheng, J. Yang, Z. Xu, Y. Liu, H. Lee, X. Huan, S. P. Feng, H. C. Shum, B. P. Chan, S. K. Seol, J. Pyo, J. Tae Kim, Nano Lett. 2021, 21, 5186–5194.
- 18P. Ran, L. Yang, T. Jiang, X. Xu, J. Hui, Y. Su, C. Kuang, X. Liu, Y. M. Yang, Adv. Mater. 2022, 34, 2205458.
- 19Y. Wang, X. Yin, W. Liu, J. Xie, J. Chen, M. A. Silver, D. Sheng, L. Chen, J. Diwu, N. Liu, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, Angew. Chem. Int. Ed. 2018, 57, 7883–7887; Angew. Chem. 2018, 130, 8009–8013.
- 20M. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208440; Angew. Chem. 2022, 134, e202208440.
- 21Y. He, L. Matei, H. J. Jung, K. M. McCall, M. Chen, C. C. Stoumpos, Z. Liu, J. A. Peters, D. Y. Chung, B. W. Wessels, M. R. Wasielewski, V. P. Dravid, A. Burger, M. G. Kanatzidis, Nat. Commun. 2018, 9, 1609.
- 22J. Ding, Q. Yan, Sci. China Mater. 2017, 60, 1063–1078.
- 23C. Ding, H. Jia, Q. Sun, Z. Yao, H. Yang, W. Liu, X. Pang, S. Li, C. Liu, T. Minari, J. Chen, X. Liu, Y. Song, J. Mater. Chem. C 2021, 9, 7829–7851.
- 24Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S. F. Liu, Adv. Mater. 2015, 27, 5176–5183.
- 25L. Ma, Z. Yan, X. Zhou, Y. Pi, Y. Du, J. Huang, K. Wang, K. Wu, C. Zhuang, X. Han, Nat. Commun. 2021, 12, 2023.
- 26W. Li, H. Li, J. Song, C. Guo, H. Zhang, H. Wei, B. Yang, Sci. Bull. 2021, 66, 2199–2206.
- 27J. Di, J. Chang, S. Liu, EcoMat 2020, 2, e12036.
- 28A. Singh, M. K. Jana, D. B. Mitzi, Adv. Mater. 2021, 33, 2005868.
- 29A. Qiao, T. D. Bennett, H. Tao, A. Krajnc, G. Mali, C. M. Doherty, A. W. Thornton, J. C. Mauro, G. N. Greaves, Y. Yue, Sci. Adv. 2018, 4, eaao6827.
- 30B. K. Shaw, A. R. Hughes, M. Ducamp, S. Moss, A. Debnath, A. F. Sapnik, M. F. Thorne, L. N. McHugh, A. Pugliese, D. S. Keeble, P. Chater, J. M. Bermudez-Garcia, X. Moya, S. K. Saha, D. A. Keen, F. X. Coudert, F. Blanc, T. D. Bennett, Nat. Chem. 2021, 13, 778–785.
- 31B. Li, J. Jin, M. Yin, X. Zhang, M. Molokeev, Z. Xia, Y. Xu, Angew. Chem. Int. Ed. 2022, 61, e202212741; Angew. Chem. 2022, 134, e202212741.
- 32Deposition Number 2214302 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 33K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.
- 34L. Mao, P. Guo, S. Wang, A. K. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2020, 142, 13582–13589.
- 35Y. S. Chen, Z. Bao, W. T. Huang, A. Lazarowska, N. Majewska, S. Mahlik, G. Leniec, S. M. Kaczmarek, H. Y. Huang, C. I. Wu, D. J. Huang, R. S. Liu, Inorg. Chem. 2022, 61, 2595–2602.
- 36L. Zhang, L. Wu, K. Wang, B. Zou, Adv. Sci. 2019, 6, 1801628.
- 37L. Zhang, Z. Liu, X. Sun, G. Niu, J. Jiang, Y. Fang, D. Duan, K. Wang, L. Sui, K. Yuan, G. Wu, B. Zou, Adv. Opt. Mater. 2022, 10, 2101892.
- 38G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer Berlin Heidelberg, Berlin, 1994, pp. 10–32.
10.1007/978-3-642-79017-1_2 Google Scholar
- 39J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15–25.
- 40C. Chakravarty, P. G. Debenedetti, F. H. Stillinger, J. Chem. Phys. 2007, 126, 204508.
- 41R. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen, T. D. Bennett, F. X. Coudert, Nat. Mater. 2017, 16, 1149–1154.
- 42M. H. Kowsari, S. Alavi, M. Ashrafizaadeh, B. Najafi, J. Chem. Phys. 2008, 129, 224508.
- 43S. M. Urahata, M. C. Ribeiro, J. Chem. Phys. 2005, 122, 024511.
- 44L.-K. Gong, Q.-Q. Hu, F.-Q. Huang, Z.-Z. Zhang, N.-N. Shen, B. Hu, Y. Song, Z.-P. Wang, K.-Z. Du, X.-Y. Huang, Chem. Commun. 2019, 55, 7303–7306.
- 45Z. Lin, S. Lv, Z. Yang, J. Qiu, S. Zhou, Adv. Sci. 2022, 9, 2102439.
- 46Z. Z. Zhang, J. H. Wei, J. B. Luo, X. D. Wang, Z. L. He, D. B. Kuang, ACS Appl. Mater. Interfaces 2022, 14, 47913–47921.
- 47M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, XCOM: NIST Standard Reference Database 8, 2013, https://www.nist.gov/pml/xcom-photon-cross-sections-database.
- 48M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S. Flyckt, IEEE Trans. Nucl. Sci. 1997, 44, 1052–1061.
- 49Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, X. Liu, Nature 2018, 561, 88–93.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.