Gradient Graphdiyne Induced Copper and Oxygen Vacancies in Cu0.95V2O5 Anodes for Fast-Charging Lithium-Ion Batteries
Dr. Fan Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorJuan An
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorDr. Han Shen
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorZhongqiang Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoxing Li
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuliang Li
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Fan Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorJuan An
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorDr. Han Shen
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorZhongqiang Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guoxing Li
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuliang Li
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 P. R. China
Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorAbstract
Vacancies can significantly affect the performance of metal oxide materials. Here, a gradient graphdiyne (GDY) induced Cu/O-dual-vacancies abundant Cu0.95V2O5@GDY heterostructure material has been prepared as a competitive fast-charging anode material. Cu0.95V2O5 self-catalyzes the growth of gradient GDY with rich alkyne-alkene complex in the inner layer and rich alkyne bonds in the outer layer, leading to the formation of Cu and O vacancies in Cu0.95V2O5. The synergistic effect of vacancies and gradient GDY results in the electron redistribution at the hetero-interface to drive the generation of a built-in electric field. Thus, the Li-ion transport kinetics, electrochemical reaction reversibility and Li storage sites of Cu0.95V2O5 are greatly enhanced. The Cu0.95V2O5@GDY anodes show excellent fast-charging performance with high capacities and negligible capacity decay for 10 000 cycles and 20 000 cycles at extremely high current densities of 5 A g−1 and 10 A g−1, respectively. Over 30 % of capacity can be delivered in 35 seconds.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216397-sup-0001-misc_information.pdf3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Wolfowicz, F. J. Heremans, C. P. Anderson, S. Kanai, H. Seo, A. Gali, G. Galli, D. D. Awschalom, Nat. Rev. Mater. 2021, 6, 906–925;
- 1bJ. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu, Y. Pan, Nat. Catal. 2021, 4, 242–250;
- 1cS. Wu, H. S. Soreide, B. Chen, J. Bian, C. Yang, C. Li, P. Zhang, P. Cheng, J. Zhang, Y. Peng, G. Liu, Y. Li, H. J. Roven, J. Sun, Nat. Commun. 2022, 13, 3495;
- 1dT. Pinheiro Araujo, C. Mondelli, M. Agrachev, T. Zou, P. O. Willi, K. M. Engel, R. N. Grass, W. J. Stark, O. V. Safonova, G. Jeschke, S. Mitchell, J. Perez-Ramirez, Nat. Commun. 2022, 13, 5610.
- 2
- 2aP. M. Csernica, S. S. Kalirai, W. E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K. H. Stone, A. F. Marshall, R. Sinclair, D. A. Shapiro, M. F. Toney, W. C. Chueh, Nat. Energy 2021, 6, 642–652;
- 2bK. Zhu, S. Wei, H. Shou, F. Shen, S. Chen, P. Zhang, C. Wang, Y. Cao, X. Guo, M. Luo, H. Zhang, B. Ye, X. Wu, L. He, L. Song, Nat. Commun. 2021, 12, 6878;
- 2cY. Zhao, Y. Zhu, F. Jiang, Y. Li, Y. Meng, Y. Guo, Q. Li, Z. Huang, S. Zhang, R. Zhang, J. C. Ho, Q. Zhang, W. Liu, C. Zhi, Angew. Chem. Int. Ed. 2022, 61, e202200606; Angew. Chem. 2022, 134, e202200606;
- 2dD. Yuan, Y. Dou, Y. Tian, D. Adekoya, L. Xu, S. Zhang, Angew. Chem. Int. Ed. 2021, 60, 18830–18837; Angew. Chem. 2021, 133, 18978–18985.
- 3T. Tian, L. L. Lu, Y. C. Yin, F. Li, T. W. Zhang, Y. H. Song, Y. H. Tan, H. B. Yao, Adv. Funct. Mater. 2021, 31, 2007419.
- 4W. Hou, P. Feng, X. Guo, Z. Wang, Z. Bai, Y. Bai, G. Wang, K. Sun, Adv. Mater. 2022, 34, 2202222.
- 5
- 5aH. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 2017, 16, 454–460;
- 5bY. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, Q. Zhang, Adv. Energy Mater. 2021, 11, 2101712.
- 6X. Xiong, L. Yang, G. Liang, Z. Liu, Z. Yang, R. Zhang, C. Wang, R. Che, Adv. Energy Mater. 2022, 12, 2201967.
- 7X. Liu, L. Zhao, H. Xu, Q. Huang, Y. Wang, C. Hou, Y. Hou, J. Wang, F. Dang, J. Zhang, Adv. Energy Mater. 2020, 10, 2001415.
- 8T. Koketsu, J. Ma, B. J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortiere, M. Salanne, F. Dardoize, H. Groult, O. J. Borkiewicz, K. W. Chapman, P. Strasser, D. Dambournet, Nat. Mater. 2017, 16, 1142–1148.
- 9S. Lee, W. Jin, S. H. Kim, S. H. Joo, G. Nam, P. Oh, Y. K. Kim, S. K. Kwak, J. Cho, Angew. Chem. Int. Ed. 2019, 58, 10478–10485; Angew. Chem. 2019, 131, 10588–10595.
- 10
- 10aG. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256–3258;
- 10bY. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, Chem. Soc. Rev. 2022, 51, 2681–2709;
- 10cF. He, Y. Li, CCS Chem. 2022, https://doi.org/10.31635/ccschem.022.202202328;
- 10dH. Yu, Y. Xue, L. Hui, C. Zhang, Y. Fang, Y. Liu, X. Chen, D. Zhang, B. Huang, Y. Li, Natl. Sci. Rev. 2021, 8, nwaa213.
- 11
- 11aF. Wang, Z. Zuo, L. Li, F. He, F. Lu, Y. Li, Adv. Mater. 2019, 31, 1806272;
- 11bY. Gao, Y. Xue, L. Qi, C. Xing, X. Zheng, F. He, Y. Li, Nat. Commun. 2022, 13, 5227;
- 11cL. Hui, X. Zhang, Y. Xue, X. Chen, Y. Fang, C. Xing, Y. Liu, X. Zheng, Y. Du, C. Zhang, F. He, Y. Li, J. Am. Chem. Soc. 2022, 144, 1921–1928;
- 11dY. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 2018, 9, 1460;
- 11eL. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang, Y. Li, J. Am. Chem. Soc. 2019, 141, 10677–10683;
- 11fY. Fang, Y. Xue, L. Hui, H. Yu, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 3170–3174; Angew. Chem. 2021, 133, 3207–3211;
- 11gY. Liu, Y. Xue, L. Hui, H. Yu, Y. Fang, F. He, Y. Li, Nano Energy 2021, 89, 106333;
- 11hF. Wang, Z. Zuo, L. Li, K. Li, F. He, Z. Jiang, Y. Li, Angew. Chem. Int. Ed. 2019, 58, 15010–15015; Angew. Chem. 2019, 131, 15152–15157.
- 12J. An, H. Zhang, L. Qi, G. Li, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202113313; Angew. Chem. 2022, 134, e202113313.
- 13
- 13aY. Liu, Y. Gao, F. He, Y. Xue, Y. Li, CCS Chem. 2022, https://doi.org/10.31635/ccschem.022.202202005;
- 13bX. Zheng, Y. Xue, C. Zhang, Y. Li, CCS Chem. 2022, https://doi.org/10.31635/ccschem.022.202202189;
- 13cY. Gao, Y. Xue, F. He, Y. Li, Proc. Natl. Acad. Sci. USA 2022, 119, e2206946119.
- 14
- 14aH. Liu, Z. Zhu, Q. Yan, S. Yu, X. He, Y. Chen, R. Zhang, L. Ma, T. Liu, M. Li, R. Lin, Y. Chen, Y. Li, X. Xing, Y. Choi, L. Gao, H. S. Cho, K. An, J. Feng, R. Kostecki, K. Amine, T. Wu, J. Lu, H. L. Xin, S. P. Ong, P. Liu, Nature 2020, 585, 63–67;
- 14bX. Xu, F. Xiong, J. Meng, X. Wang, C. Niu, Q. An, L. Mai, Adv. Funct. Mater. 2020, 30, 1904398;
- 14cS. Ni, J. Liu, D. Chao, L. Mai, Adv. Energy Mater. 2019, 9, 1803324.
- 15Y. Wang, L. Cao, J. Huang, L. Kou, J. Li, J. Wu, Y. Liu, L. Pan, ACS Sustainable Chem. Eng. 2019, 7, 6267–6274.
- 16Z. Zuo, F. He, F. Wang, L. Li, Y. Li, Adv. Mater. 2020, 32, 2004379.
- 17H. Braunschweig, A. Damme, R. D. Dewhurst, A. Vargas, Nat. Chem. 2013, 5, 115–121.
- 18Y. Liu, T. Zhou, Y. Zheng, Z. He, C. Xiao, W. K. Pang, W. Tong, Y. Zou, B. Pan, Z. Guo, Y. Xie, ACS Nano 2017, 11, 8519–8526.
- 19M. Łapiński, L. Piekara-Sady, R. Kozioł, W. Sadowski, B. Kościelska, Solid State Sci. 2020, 106, 106337.
- 20P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Q. Chen, Adv. Mater. 2018, 30, 1705324.
- 21
- 21aA. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley, Nature 1997, 388, 257–259;
- 21bH.-J. Shin, S. M. Kim, S.-M. Yoon, A. Benayad, K. K. Kim, S. J. Kim, H. K. Park, J.-Y. Choi, Y. H. Lee, J. Am. Chem. Soc. 2008, 130, 2062–2066.
- 22G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, Y. Li, J. Phys. Chem. C 2011, 115, 2611–2615.
- 23
- 23aK. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, C. P. Grey, Nature 2018, 559, 556–563;
- 23bP. Barnes, Y. Zuo, K. Dixon, D. Hou, S. Lee, Z. Ma, J. G. Connell, H. Zhou, C. Deng, K. Smith, E. Gabriel, Y. Liu, O. O. Maryon, P. H. Davis, H. Zhu, Y. Du, J. Qi, Z. Zhu, C. Chen, Z. Zhu, Y. Zhou, P. J. Simmonds, A. E. Briggs, D. Schwartz, S. P. Ong, H. Xiong, Nat. Mater. 2022, 21, 795–803;
- 23cY. Zhou, E. Le Calvez, S. W. Baek, M. Frajnkovič, C. Douard, E. Gautron, O. Crosnier, T. Brousse, L. Pilon, Energy Storage Mater. 2022, 52, 371–385;
- 23dZ. Yao, X. Xia, D. Xie, Y. Wang, C.-A. Zhou, S. Liu, S. Deng, X. Wang, J. Tu, Adv. Funct. Mater. 2018, 28, 1802756;
- 23eY. Huang, H. Yang, Y. Zhang, Y. Zhang, Y. Wu, M. Tian, P. Chen, R. Trout, Y. Ma, T.-H. Wu, Y. Wu, N. Liu, J. Mater. Chem. A 2019, 7, 11250–11256;
- 23fX. Zhu, J. Xiao, Y. Chen, L. Tang, H. Hou, Z. Yao, Z. Zhang, Q. Zhong, Chem. Eng. J. 2022, 450, 138113;
- 23gH. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science 2017, 356, 599–604.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.