An Activatable NIR-II Fluorescent Reporter for In Vivo Imaging of Amyloid-β Plaques
Jia Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorMinqian Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorYue Jiang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorMin Zhao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Qing Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYuan Zhang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYi An
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Kanyi Pu
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457 Singapore
Search for more papers by this authorCorresponding Author
Prof. Qingqing Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJia Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorMinqian Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorYue Jiang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorMin Zhao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Qing Li
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYuan Zhang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorYi An
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Kanyi Pu
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457 Singapore
Search for more papers by this authorCorresponding Author
Prof. Qingqing Miao
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123 China
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorAbstract
Fluorescence imaging in the second near-infrared (NIR-II) window holds great promise for in vivo visualization of amyloid-β (Aβ) pathology, which can facilitate characterization and deep understanding of Alzheimer's disease (AD); however, it has been rarely exploited. Herein, we report the development of NIR-II fluorescent reporters with a donor-π-acceptor (D-π-A) architecture for specific detection of Aβ plaques in AD-model mice. Among all the designed probes, DMP2 exhibits the highest affinity to Aβ fibrils and can specifically activate its NIR-II fluorescence after binding to Aβ fibrils via suppressed twisted intramolecular charge transfer (TICT) effect. With suitable lipophilicity for ideal blood–brain barrier (BBB) penetrability and deep-tissue penetration of NIR-II fluorescence, DMP2 possesses specific detection of Aβ plaques in in vivo AD-model mice. Thus, this study presents a potential agent for non-invasive imaging of Aβ plaques and deep deciphering of AD progression.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202216351-sup-0001-misc_information.pdf8.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Scheltens, B. De Strooper, M. Kivipelto, H. Holstege, G. Chetelat, C. E. Teunissen, J. Cummings, W. M. van der Flier, Lancet 2021, 397, 1577–1590.
- 2D. S. Knopman, H. Amieva, R. C. Petersen, G. Chetelat, D. M. Holtzman, B. T. Hyman, R. A. Nixon, D. T. Jones, Nat. Rev. Dis. Primers 2021, 7, 33.
- 3H. P. Shih, X. Zhang, A. M. Aronov, Nat. Rev. Drug Discovery 2018, 17, 78.
- 4
- 4aR. J. Bateman, C. Xiong, T. L. Benzinger, A. M. Fagan, A. Goate, N. C. Fox, D. S. Marcus, N. J. Cairns, X. Xie, T. M. Blazey, D. M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P. S. Aisen, B. Ghetti, W. E. Klunk, E. McDade, R. N. Martins, C. L. Masters, R. Mayeux, J. M. Ringman, M. N. Rossor, P. R. Schofield, R. A. Sperling, S. Salloway, J. C. Morris, N. Engl. J. Med. 2012, 367, 795–804;
- 4bA. S. Fleisher, K. Chen, Y. T. Quiroz, L. J. Jakimovich, M. Gutierrez Gomez, C. M. Langois, J. B. Langbaum, A. Roontiva, P. Thiyyagura, W. Lee, N. Ayutyanont, L. Lopez, S. Moreno, C. Munoz, V. Tirado, N. Acosta-Baena, A. M. Fagan, M. Giraldo, G. Garcia, M. J. Huentelman, P. N. Tariot, F. Lopera, E. M. Reiman, JAMA Neurol. 2015, 72, 316–324.
- 5
- 5aN. Bandara, A. K. Sharma, S. Krieger, J. W. Schultz, B. H. Han, B. E. Rogers, L. M. Mirica, J. Am. Chem. Soc. 2017, 139, 12550–12558;
- 5bW. Yang, Y. Wong, O. T. Ng, L. P. Bai, D. W. Kwong, Y. Ke, Z. H. Jiang, H. W. Li, K. K. Yung, M. S. Wong, Angew. Chem. Int. Ed. 2012, 51, 1804–1810; Angew. Chem. 2012, 124, 1840–1846.
- 6
- 6aW. Jagust, Nat. Rev. Neurosci. 2018, 19, 687–700;
- 6bY. Li, D. Xu, H. N. Chan, C. Y. Poon, S. L. Ho, H. W. Li, M. S. Wong, Small 2018, 14, 1800901.
- 7L. Zhu, K. Ploessl, H. F. Kung, Chem. Soc. Rev. 2014, 43, 6683–6691.
- 8J. Zhou, P. Jangili, S. Son, M. S. Ji, M. Won, J. S. Kim, Adv. Mater. 2020, 32, 2001945.
- 9
- 9aX. Duan, G. Q. Zhang, S. Ji, Y. Zhang, J. Li, H. Ou, Z. Gao, G. Feng, D. Ding, Angew. Chem. Int. Ed. 2022, 61, e202116174; Angew. Chem. 2022, 134, e202116174;
- 9bK. Wang, H. Gao, Y. Zhang, H. Yan, J. Si, X. Mi, S. Xia, X. Feng, D. Liu, D. Kong, T. Wang, D. Ding, Adv. Mater. 2022, 34, 2106994;
- 9cC. Chen, H. Gao, H. Ou, R. T. K. Kwok, Y. Tang, D. Zheng, D. Ding, J. Am. Chem. Soc. 2022, 144, 3429–3441;
- 9dC. Chen, X. Ni, S. Jia, Y. Liang, X. Wu, D. Kong, D. Ding, Adv. Mater. 2019, 31, 1904914;
- 9eP. Cheng, W. Chen, S. Li, S. He, Q. Miao, K. Pu, Adv. Mater. 2020, 32, 1908530;
- 9fJ. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133–1143;
- 9gS. He, J. Li, Y. Lyu, J. Huang, K. Pu, J. Am. Chem. Soc. 2020, 142, 7075–7082;
- 9hS. S. Liew, Z. Zeng, P. Cheng, S. He, C. Zhang, K. Pu, J. Am. Chem. Soc. 2021, 143, 18827–18831;
- 9iQ. Miao, D. C. Yeo, C. Wiraja, J. Zhang, X. Ning, C. Xu, K. Pu, Angew. Chem. Int. Ed. 2018, 57, 1256–1260; Angew. Chem. 2018, 130, 1270–1274;
- 9jY. Hu, J. Zhang, Y. Miao, X. Wen, J. Wang, Y. Sun, Y. Chen, J. Lin, L. Qiu, K. Guo, H. Y. Chen, D. Ye, Angew. Chem. Int. Ed. 2021, 60, 18082–18093; Angew. Chem. 2021, 133, 18230–18241;
- 9kJ. Weng, Y. Wang, Y. Zhang, D. Ye, J. Am. Chem. Soc. 2021, 143, 18294–18304;
- 9lL. Wu, Y. Ishigaki, Y. Hu, K. Sugimoto, W. Zeng, T. Harimoto, Y. Sun, J. He, T. Suzuki, X. Jiang, H. Y. Chen, D. Ye, Nat. Commun. 2020, 11, 446;
- 9mQ. Li, S. Li, S. He, W. Chen, P. Cheng, Y. Zhang, Q. Miao, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 7018–7023; Angew. Chem. 2020, 132, 7084–7089;
- 9nS. Li, Q. Li, W. Chen, Z. Song, Y. An, P. Chen, Y. Wu, G. Wang, Y. He, Q. Miao, Small 2022, 18, 2201334;
- 9oJ. Yang, W. Yin, R. Van, K. Yin, P. Wang, C. Zheng, B. Zhu, K. Ran, C. Zhang, M. Kumar, Y. Shao, C. Ran, Nat. Commun. 2020, 11, 4052;
- 9pG. Gao, X. Sun, X. Liu, R. Tang, M. Wang, W. Zhan, J. Zheng, G. Liang, Nano Lett. 2022, 22, 6782–6786.
- 10A. Aliyan, N. P. Cook, A. A. Marti, Chem. Rev. 2019, 119, 11819–11856.
- 11
- 11aM. Hintersteiner, A. Enz, P. Frey, A. L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K. H. Wiederhold, H. U. Gremlich, Nat. Biotechnol. 2005, 23, 577–583;
- 11bW. Fu, C. Yan, Z. Guo, J. Zhang, H. Zhang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2019, 141, 3171–3177;
- 11cM. Cui, M. Ono, H. Watanabe, H. Kimura, B. Liu, H. Saji, J. Am. Chem. Soc. 2014, 136, 3388–3394;
- 11dX. Y. Liu, X. J. Wang, L. Shi, Y. H. Liu, L. Wang, K. Li, Q. Bu, X. B. Cen, X. Q. Yu, Anal. Chem. 2022, 94, 7665–7673;
- 11eY. Ma, Z. Ye, C. Zhang, X. Wang, H. W. Li, M. S. Wong, H. B. Luo, L. Xiao, ACS Nano 2020, 14, 11341–11351;
- 11fR. Ni, Z. Chen, X. L. Dean-Ben, F. F. Voigt, D. Kirschenbaum, G. Shi, A. Villois, Q. Zhou, A. Crimi, P. Arosio, R. M. Nitsch, K. P. R. Nilsson, A. Aguzzi, F. Helmchen, J. Klohs, D. Razansky, Nat. Biomed. Eng. 2022, 6, 1031–1044;
- 11gK. Rajasekhar, N. Narayanaswamy, N. A. Murugan, K. Viccaro, H. G. Lee, K. Shah, T. Govindaraju, Biosens. Bioelectron. 2017, 98, 54–61;
- 11hX. Wang, A. Iyaswamy, D. Xu, S. Krishnamoorthi, S. G. Sreenivasmurthy, Y. Yang, Y. Li, C. Chen, M. Li, H. W. Li, M. S. Wong, ACS Appl. Mater. Interfaces 2022, https://doi.org/10.1021/acsami.2c07859;
- 11iX. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore, C. Ran, Proc. Natl. Acad. Sci. USA 2015, 112, 9734–9739;
- 11jJ. An, P. Verwilst, H. Aziz, J. Shin, S. Lim, I. Kim, Y. K. Kim, J. S. Kim, Bioact. Mater. 2022, 13, 239–248;
- 11kJ. Shin, P. Verwilst, H. Choi, S. Kang, J. Han, N. H. Kim, J. G. Choi, M. S. Oh, J. S. Hwang, D. Kim, I. Mook-Jung, J. S. Kim, Angew. Chem. Int. Ed. 2019, 58, 5648–5652; Angew. Chem. 2019, 131, 5704–5708.
- 12
- 12aQ. Miao, K. Pu, Adv. Mater. 2018, 30, 1801778;
- 12bQ. Yang, H. Ma, Y. Liang, H. Dai, Acc. Mater. Res. 2021, 2, 170–183.
- 13
- 13aJ. Huang, C. Xie, X. Zhang, Y. Jiang, J. Li, Q. Fan, K. Pu, Angew. Chem. Int. Ed. 2019, 58, 15120–15127; Angew. Chem. 2019, 131, 15264–15271;
- 13bF. Ding, C. Li, Y. Xu, J. Li, H. Li, G. Yang, Y. Sun, Adv. Healthcare Mater. 2018, 7, 1800973;
- 13cY. Fan, C. Li, S. Bai, X. Ma, J. Yang, X. Guan, Y. Sun, Small 2022, 18, 2201625;
- 13dY. Xu, C. Li, S. Lu, Z. Wang, S. Liu, X. Yu, X. Li, Y. Sun, Nat. Commun. 2022, 13, 2009;
- 13eF. Ding, Y. Zhan, X. Lu, Y. Sun, Chem. Sci. 2018, 9, 4370–4380;
- 13fF. Ding, Z. Chen, W. Y. Kim, A. Sharma, C. Li, Q. Ouyang, H. Zhu, G. Yang, Y. Sun, J. S. Kim, Chem. Sci. 2019, 10, 7023–7028.
- 14Y. Zhan, S. Ling, H. Huang, Y. Zhang, G. Chen, S. Huang, C. Li, W. Guo, Q. Wang, Angew. Chem. Int. Ed. 2021, 60, 2637–2642; Angew. Chem. 2021, 133, 2669–2674.
- 15
- 15aD. Li, S. Wang, Z. Lei, C. Sun, A. M. El-Toni, M. S. Alhoshan, Y. Fan, F. Zhang, Anal. Chem. 2019, 91, 4771–4779;
- 15bT. B. Ren, Z. Y. Wang, Z. Xiang, P. Lu, H. H. Lai, L. Yuan, X. B. Zhang, W. Tan, Angew. Chem. Int. Ed. 2021, 60, 800–805; Angew. Chem. 2021, 133, 813–818.
- 16
- 16aC. Li, W. Li, H. Liu, Y. Zhang, G. Chen, Z. Li, Q. Wang, Angew. Chem. Int. Ed. 2020, 59, 247–252; Angew. Chem. 2020, 132, 253–258;
- 16bX. D. Zhang, H. Wang, A. L. Antaris, L. Li, S. Diao, R. Ma, A. Nguyen, G. Hong, Z. Ma, J. Wang, S. Zhu, J. M. Castellano, T. Wyss-Coray, Y. Liang, J. Luo, H. Dai, Adv. Mater. 2016, 28, 6872–6879.
- 17Y. Tang, Y. Li, X. Lu, X. Hu, H. Zhao, W. Hu, F. Lu, Q. Fan, W. Huang, Adv. Funct. Mater. 2019, 29, 1807376.
- 18J. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717–11731; Angew. Chem. 2020, 132, 11813–11827.
- 19H. Li, J. Wang, Y. Li, X. Chen, W. Zhang, Y. Zhao, G. Liu, J. Pan, Sens. Actuators B 2022, 358, 131481.
- 20C. Wang, Q. Qiao, W. Chi, J. Chen, W. Liu, D. Tan, S. McKechnie, D. Lyu, X. F. Jiang, W. Zhou, N. Xu, Q. Zhang, Z. Xu, X. Liu, Angew. Chem. Int. Ed. 2020, 59, 10160–10172; Angew. Chem. 2020, 132, 10246–10258.
- 21A. K. Paravastu, R. D. Leapman, W. M. Yau, R. Tycko, Proc. Natl. Acad. Sci. USA 2008, 105, 18349–18354.
- 22I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, V. V. Prokopenko, J. Comput.-Aided Mol. Des. 2005, 19, 453–463.
- 23S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108, 1501–1516.
- 24B. Urbanc, L. Cruz, R. Le, J. Sanders, K. H. Ashe, K. Duff, H. E. Stanley, M. C. Irizarry, B. T. Hyman, Proc. Natl. Acad. Sci. USA 2002, 99, 13990–13995.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.