Simultaneous Harvesting of Multiple Hot Holes via Visible-Light Excitation of Plasmonic Gold Nanospheres for Selective Oxidative Bond Scission of Olefins to Carbonyls
Swathi Swaminathan
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Jitendra K. Bera
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dr. Manabendra Chandra
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Conceptualization (lead), Funding acquisition (lead), Investigation (supporting), Methodology (supporting), Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorSwathi Swaminathan
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Jitendra K. Bera
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Dr. Manabendra Chandra
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 Uttar Pradesh, India
Contribution: Conceptualization (lead), Funding acquisition (lead), Investigation (supporting), Methodology (supporting), Resources (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Using visible photoexcitation of gold nanospheres we successfully demonstrate the simultaneous harvesting of plasmon-induced multiple hot holes in the complete oxidative scission of the C=C bond in styrene at room temperature to selectively form benzaldehyde and formaldehyde, which is a reaction that requires activation of multiple substrates. Our results reveal that, while extraction of hot holes becomes efficient for interband excitation, harvesting of multiple hot holes from the excited Au nanospheres becomes prevalent only beyond a threshold light intensity. We show that the alkene oxidation proceeded via a sequence of two consecutive elementary steps; namely, a binding step and a cyclic oxometallate transition state as the rate-determining step. This demonstration of plasmon-excitation-mediated harvesting of multiple hot holes without the use of an extra hole transport media opens exciting possibilities, notably for difficult catalytic transformations involving multielectron oxidation processes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215933-sup-0001-misc_information.pdf3.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J. C. Yu, C.-H. Yan, J. Am. Chem. Soc. 2013, 135, 5588–5601.
- 2X. Huang, Y. Li, Y. Chen, H. Zhou, X. Duan, Y. Huang, Angew. Chem. Int. Ed. 2013, 52, 6063–6067; Angew. Chem. 2013, 125, 6179–6183.
- 3J. Cui, Y. Li, L. Liu, L. Chen, J. Xu, J. Ma, G. Fang, E. Zhu, H. Wu, L. Zhao, L. Wang, Y. Huang, Nano Lett. 2015, 15, 6295–6301.
- 4S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, N. J. Halas, Nano Lett. 2013, 13, 240–247.
- 5S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, N. J. Halas, J. Am. Chem. Soc. 2014, 136, 64–67.
- 6J. Lee, S. Mubeen, X. Ji, G. D. Stucky, M. Moskovits, Nano Lett. 2012, 12, 5014–5019.
- 7S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, M. Moskovits, Nat. Nanotechnol. 2013, 8, 247–251.
- 8P. Christopher, H. Xin, S. Linic, Nat. Chem. 2011, 3, 467–472.
- 9P. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044–1050.
- 10A. Marimuthu, J. Zhang, S. Linic, Science 2013, 339, 1590–1593.
- 11S. Swaminathan, V. G. Rao, J. K. Bera, M. Chandra, Angew. Chem. Int. Ed. 2021, 60, 12532–12538; Angew. Chem. 2021, 133, 12640–12646.
- 12Y. Kim, D. Dumett Torres, P. K. Jain, Nano Lett. 2016, 16, 3399–3407.
- 13G. Kumari, X. Zhang, D. Devasia, J. Heo, P. K. Jain, ACS Nano 2018, 12, 8330–8340.
- 14D. Lee, S. Yoon, J. Phys. Chem. C 2020, 124, 15879–15885.
- 15A. E. Schlather, A. Manjavacas, A. Lauchner, V. S. Marangoni, C. J. DeSantis, P. Nordlander, N. J. Halas, J. Phys. Chem. Lett. 2017, 8, 2060–2067.
- 16J. S. DuChene, G. Tagliabue, A. J. Welch, W.-H. Cheng, H. A. Atwater, Nano Lett. 2018, 18, 2545–2550.
- 17E. Pensa, J. Gargiulo, A. Lauri, S. Schlücker, E. Cortés, S. A. Maier, Nano Lett. 2019, 19, 1867–1874.
- 18C. Zhang, F. Jia, Z. Li, X. Huang, G. Lu, Nano Res. 2020, 13, 3183–3197.
- 19A. O. Govorov, H. Zhang, Y. K. Gun'ko, J. Phys. Chem. C 2013, 117, 16616–16631.
- 20A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, H. A. Atwater, ACS Nano 2016, 10, 957–966.
- 21P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney, U. Bach, Adv. Mater. 2012, 24, 4750–4755.
- 22T. Barman, A. A. Hussain, B. Sharma, A. R. Pal, Sci. Rep. 2016, 5, 18276.
- 23T. Ishida, S. Toe, T. Tatsuma, J. Phys. Chem. C 2019, 123, 30562–30570.
- 24Y. Zhang, Y. Zhang, W. Guo, A. C. Johnston-Peck, Y. Hu, X. Song, W. David Wei, Energy Environ. Sci. 2020, 13, 1501–1508.
- 25S. Yu, A. J. Wilson, J. Heo, P. K. Jain, Nano Lett. 2018, 18, 2189–2194.
- 26Y. Kim, J. G. Smith, P. K. Jain, Nat. Chem. 2018, 10, 763–769.
- 27S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin, Chem. Rev. 2006, 106, 2943–2989.
- 28S. G. Van Ornum, R. M. Champeau, R. Pariza, Chem. Rev. 2006, 106, 2990–3001.
- 29P. S. Bailey, Ozonation in Organic Chemistry V2: Nonolefinic Compounds, Elsevier, Amsterdam, 2012, pp. 355–422.
- 30S. Buntasana, J. Hayashi, P. Saetung, P. Klumphu, T. Vilaivan, P. Padungros, J. Org. Chem. 2022, 87, 6525–6540.
- 31J. Kula, Chem. Health Saf. 1999, 6, 21–22.
- 32J. A. Ragan, D. J. am Ende, S. J. Brenek, S. A. Eisenbeis, R. A. Singer, D. L. Tickner, J. J. Teixeira, B. C. Vanderplas, N. Weston, Org. Process Res. Dev. 2003, 7, 155–160.
- 33M. D. Roydhouse, W. B. Motherwell, A. Constantinou, A. Gavriilidis, R. Wheeler, K. Down, I. Campbell, RSC Adv. 2013, 3, 5076–5082.
- 34“Safe and Fast Ozonolysis Using the IceCubeTM Flow Reactor,” can be found under https://thalesnano.com/application-notes/icecube-application-notes/safe-and-fast-ozonolysis-using-the-icecubetm-flow-reactor/, 2022.
- 35B. M. Trost, Oxidation: Selectivity, Strategy & Efficiency in Modern Organic Chemistry, Elsevier, Amsterdam, 1992, pp. 357–541.
- 36P. Spannring, P. C. A. Bruijnincx, B. M. Weckhuysen, R. J. M. K. Gebbink, Catal. Sci. Technol. 2014, 4, 2182–2209.
- 37P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha, R. Ramapanicker, J. K. Bera, J. Am. Chem. Soc. 2014, 136, 13987–13990.
- 38Z. Huang, R. Guan, M. Shanmugam, E. L. Bennett, C. M. Robertson, A. Brookfield, E. J. L. McInnes, J. Xiao, J. Am. Chem. Soc. 2021, 143, 10005–10013.
- 39B. Liu, P. Wang, A. Lopes, L. Jin, W. Zhong, Y. Pei, S. L. Suib, J. He, ACS Catal. 2017, 7, 3483–3488.
- 40M. L. Brongersma, N. J. Halas, P. Nordlander, Nat. Nanotechnol. 2015, 10, 25–34.
- 41N. Zou, G. Chen, X. Mao, H. Shen, E. Choudhary, X. Zhou, P. Chen, ACS Nano 2018, 12, 5570–5579.
- 42D. Wang, Y. R. Koh, Z. A. Kudyshev, K. Maize, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, A. Shakouri, Nano Lett. 2019, 19, 3796–3803.
- 43Y.-F. Huang, M. Zhang, L.-B. Zhao, J.-M. Feng, D.-Y. Wu, B. Ren, Z.-Q. Tian, Angew. Chem. Int. Ed. 2014, 53, 2353–2357; Angew. Chem. 2014, 126, 2385–2389.
- 44F. Che, J. T. Gray, S. Ha, N. Kruse, S. L. Scott, J.-S. McEwen, ACS Catal. 2018, 8, 5153–5174.
- 45B. Seemala, A. J. Therrien, M. Lou, K. Li, J. P. Finzel, J. Qi, P. Nordlander, P. Christopher, ACS Energy Lett. 2019, 4, 1803–1809.
- 46Y. Zhai, J. S. DuChene, Y.-C. Wang, J. Qiu, A. C. Johnston-Peck, B. You, W. Guo, B. DiCiaccio, K. Qian, E. W. Zhao, F. Ooi, D. Hu, D. Su, E. A. Stach, Z. Zhu, W. D. Wei, Nat. Mater. 2016, 15, 889–895.
- 47R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard III, H. A. Atwater, Nat. Commun. 2014, 5, 5788.
- 48M. Bernardi, J. Mustafa, J. B. Neaton, S. G. Louie, Nat. Commun. 2015, 6, 7044.
- 49W. Guo, A. C. Johnston-Peck, Y. Zhang, Y. Hu, J. Huang, W. D. Wei, J. Am. Chem. Soc. 2020, 142, 10921–10925.
- 50Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, W. D. Wei, Chem. Rev. 2018, 118, 2927–2954.
- 51J. McFarlane, B. Henderson, S. Donnecke, J. S. McIndoe, Organometallics 2019, 38, 4051–4053.
- 52S. Yu, P. K. Jain, Angew. Chem. Int. Ed. 2020, 59, 2085–2088; Angew. Chem. 2020, 132, 2101–2104.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.