Ligand-Controlled Nickel-Catalyzed Regiodivergent Cross-Electrophile Alkyl-Alkyl Couplings of Alkyl Halides
Dr. Wen-Tao Zhao
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorHuan Meng
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorJia-Ni Lin
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shu
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorDr. Wen-Tao Zhao
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorHuan Meng
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorJia-Ni Lin
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shu
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong P. R. China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin, P. R. China
Search for more papers by this authorAbstract
Functionalizing specific positions on a saturated alkyl molecule is a key challenge in synthetic chemistry. Herein, a ligand-controlled regiodivergent alkylations of alkyl bromides at different positions by Ni-catalyzed alkyl-alkyl cross-electrophile coupling with the second alkyl bromides has been developed. The reaction undergoes site-selective isomerization on one alkyl bromides in a controlled manner, providing switchable access to diverse alkylated structures at different sites of alkyl bromides. The reaction occurs at three similar positions with excellent chemo- and regioselectivity, representing a remarkable ligand tuned reactivity between alkyl-alkyl cross-coupling and nickel migration along the hydrocarbon side chain. This reaction offers a catalytic platform to diverse saturated architectures by alkyl-alkyl bond-formation from identical starting materials.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202215779-sup-0001-misc_information.pdf8.1 MB | Supporting Information |
ange202215779-sup-0001-SI_ZWTJ181_0m.cif1.1 MB | Supporting Information |
ange202215779-sup-0001-SI_ZWTK42_0m.cif1,017.1 KB | Supporting Information |
ange202215779-sup-0001-SI_ZWTK5203_0m_pl.cif975.3 KB | Supporting Information |
ange202215779-sup-0001-ZWTJ181_0m_cifreport.pdf77 KB | Supporting Information |
ange202215779-sup-0001-ZWTK42_0m_cifreport-2.pdf88.7 KB | Supporting Information |
ange202215779-sup-0001-ZWTK5203_0m_pl_cifreport.pdf78.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Diederich, P. J. Stang, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998;
10.1002/9783527612222 Google Scholar
- 1bM. R. Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525–1532;
- 1cR. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492;
- 1dC. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780–1824;
- 1eJ. Choi, G. C. Fu, Science 2017, 356, 152.
- 2For selected reviews, see:
- 2aC. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. J. Von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842;
- 2bD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 2cJ. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411–1421.
- 3
- 3aZ. Wang, H. Yin, G. C. Fu, Nature 2018, 563, 379–383;
- 3bS.-J. He, J.-W. Wang, Y. Li, Z.-Y. Xu, X.-X. Wang, X. Lu, Y. Fu, J. Am. Chem. Soc. 2020, 142, 214–221;
- 3cY. He, C. Liu, L. Yu, S. Zhu, Angew. Chem. Int. Ed. 2020, 59, 21530–21534; Angew. Chem. 2020, 132, 21714–21718.
- 4
- 4aD. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920–921;
- 4bM. R. Prinsell, D. A. Everson, D. J. Weix, Chem. Commun. 2010, 46, 5743–5745;
- 4cS. Kim, M. J. Goldfogel, M. M. Gilbert, D. J. Weix, J. Am. Chem. Soc. 2020, 142, 9902–9907;
- 4dA. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442–7445.
- 5L. K. G. Ackerman, M. M. Lovell, D. J. Weix, Nature 2015, 524, 454–457.
- 6
- 6aR. Shrestha, D. J. Weix, Org. Lett. 2011, 13, 2766–2769;
- 6bR. Shrestha, S. C. M. Dorn, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 751–762;
- 6cD. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–4798;
- 6dL. K. G. Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci. 2015, 6, 1115–1119;
- 6eB. Wang, Y. Dai, W. Tong, H. Gong, Org. Biomol. Chem. 2015, 13, 11418–11421.
- 7
- 7aI. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew. Chem. Int. Ed. 2015, 54, 14523–14526; Angew. Chem. 2015, 127, 14731–14734;
- 7bA. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209–219;
- 7cX. Lu, B. Xiao, Z. Zhang, T. Gong, W. Su, J. Yi, Y. Fu, L. Liu, Nat. Commun. 2016, 7, 11129;
- 7dH. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018, 4, 153–165;
- 7eD. Janssen-Müller, B. Sahoo, S.-Z. Sun, R. Martin, Isr. J. Chem. 2020, 60, 195–206.
- 8
- 8aS. Bera, X. Hu, Angew. Chem. Int. Ed. 2019, 58, 13854–13859; Angew. Chem. 2019, 131, 13992–13997;
- 8bJ. Jeon, C. Lee, H. Seo, S. Hong, J. Am. Chem. Soc. 2020, 142, 20470–20480.
- 9
- 9aX. Yu, T. Yang, S. Wang, H. Xu, H. Gong, Org. Lett. 2011, 13, 2138–2141;
- 9bY. Dai, F. Wu, Z. Zang, H. You, H. Gong, Chem. Eur. J. 2012, 18, 808–812.
- 10
- 10aK. Wang, W. Kong, Chin. J. Chem. 2018, 36, 247–256;
- 10bR. A. Singer, S. Monfette, D. Bernhardson, S. Tcyrulnikov, A. K. Hubbell, E. C. Hansen, Org. Process Res. Dev. 2021, 25, 1802–1815;
- 10cR. Kranthikumar, Organometallics 2022, 41, 667–679.
- 11
- 11aF. Chen, K. Chen, Y. Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem. Soc. 2017, 139, 13929–13935;
- 11bJ. He, P. Song, X. Xu, S. Zhu, Y. Wang, ACS Catal. 2019, 9, 3253–3259.
- 12
- 12aL. Peng, Y. Li, Y. Li, W. Wang, H. Pang, G. Yin, ACS Catal. 2018, 8, 310–313;
- 12bL. Peng, Z. Li, G. Yin, Org. Lett. 2018, 20, 1880–1883;
- 12cY. Li, Y. Li, L. Peng, D. Wu, L. Zhu, G. Yin, Chem. Sci. 2020, 11, 10461–10464.
- 13G. S. Kumar, A. Peshkov, A. Brzozowska, P. Nikolaienko, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2020, 59, 6513–6519; Angew. Chem. 2020, 132, 6575–6581.
- 14K.-J. Jiao, C. Ma, D. Liu, H. Qiu, B. Cheng, T.-S. Mei, Org. Chem. Front. 2021, 8, 6603–6608.
- 15S. Dupuy, K.-F. Zhang, A.-S. Goutierre, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 14793–14797; Angew. Chem. 2016, 128, 15013–15017.
- 16F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84–88.
- 17For selected reviews, see:
- 17aN. Funken, Y.-Q. Zhang, A. Gansäuer, Chem. Eur. J. 2017, 23, 19–32;
- 17bC. Nájera, I. P. Beletskaya, M. Yus, Chem. Soc. Rev. 2019, 48, 4515–4618;
- 17cG. Rani, V. Luxami, K. Paul, Chem. Commun. 2020, 56, 12479–12521;
- 17dM. Viji, S. Lanka, J. Sim, C. Jung, H. Lee, M. Vishwanath, J.-K. Jung, Catalysts 2021, 11, 1013;
- 17eL. Liu, M. Durai, H. Doucet, Eur. J. Org. Chem. 2022, e202200007.
- 18
- 18aX. Chen, W. Rao, T. Yang, M. J. Koh, Nat. Commun. 2020, 11, 5857;
- 18bP.-F. Yang, L. Zhu, J.-X. Liang, H.-T. Zhao, J.-X. Zhang, X.-W. Zeng, Q. Ouyang, W. Shu, ACS Catal. 2022, 12, 5795–5805;
- 18cP.-F. Yang, J.-X. Liang, H.-T. Zhao, J.-X. Zhang, X.-W. Zeng, W. Shu, ChemRxiv 2021, https://doi.org/10.26434/chemrxiv.14213588.v1;
10.26434/chemrxiv.14213588.v1 Google Scholar
- 18dX.-X. Wang, Y.-T. Xu, Z.-L. Zhang, X. Lu, Y. Fu, Nat. Commun. 2022, 13, 1890.
- 19
- 19aL. Zhao, Y. Zhu, M. Liu, L. Xie, J. Liang, H. Shi, X. Meng, Z. Chen, J. Han, C. Wang, Angew. Chem. Int. Ed. 2022, 61, e202204716; Angew. Chem. 2022, 134, e202204716;
- 19bJ.-W. Wang, D.-G. Liu, Z. Chang, Z. Li, Y. Fu, X. Lu, Angew. Chem. Int. Ed. 2022, 61, e202205537; Angew. Chem. 2022, 134, e202205537;
- 19cP.-F. Yang, W. Shu, Angew. Chem. Int. Ed. 2022, 61, e202208018; Angew. Chem. 2022, 134, e202208018.
- 20For more details, see Supporting Information.
- 21Deposition Numbers 2221174 (for 3b), 2221178 (for 4p), and 2221179 (for 5p) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.