Xanthene-Based Nitric Oxide-Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window
Chathuranga S. L. Rathnamalala
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
These authors contributed equally to this work.
Search for more papers by this authorSelena Hernandez
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Melissa Y. Lucero
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorChelsea B. Swartchick
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorAmanda K. East
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorProf. Dr. Steven R. Gwaltney
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jefferson Chan
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Colleen N. Scott
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
Search for more papers by this authorChathuranga S. L. Rathnamalala
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
These authors contributed equally to this work.
Search for more papers by this authorSelena Hernandez
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Melissa Y. Lucero
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorChelsea B. Swartchick
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorAmanda K. East
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorProf. Dr. Steven R. Gwaltney
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jefferson Chan
Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Colleen N. Scott
Department of Chemistry, Mississippi State University, 310 President Circle, Mississippi State, MS 39762 USA
Search for more papers by this authorAbstract
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near-infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214855-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Weissleder, Nat. Biotechnol. 2001, 19, 316–317;
- 1bJ. V. Frangioni, Curr. Opin. Chem. Biol. 2003, 7, 626–634.
- 2P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, Ca-Cancer J. Clin. 2011, 61, 250–281.
- 3X. Kang, Y. Cai, Q. Wang, C. Wang, W. Chen, W. Yang, A. Suryawanshi, G. Zhou, P. Chen, F. Li, Int. J. Pharm. 2021, 607, 120972.
- 4X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115–2120.
- 5Z. Guo, S. Park, J. Yoon, I. Shin, Chem. Soc. Rev. 2014, 43, 16–29.
- 6
- 6aH. J. Knox, J. Chan, Acc. Chem. Res. 2018, 51, 2897–2905;
- 6bZ. Zhao, C. B. Swartchick, J. Chan, Chem. Soc. Rev. 2022, 51, 829–868;
- 6cA. K. Yadav, S. Hernandez, S. Su, J. Chan, Curr. Opin. Chem. Biol. 2020, 57, 114–121.
- 7
- 7aJ. Chan, S. C. Dodani, C. J. Chang, Nat. Chem. 2012, 4, 973–984;
- 7bA. K. East, M. Y. Lucero, Chem. Sci. 2021, 12, 3393–3405;
- 7cK. J. Bruemmer, S. W. M. Crossley, C. J. Chang, Angew. Chem. Int. Ed. 2020, 59, 13734–13762; Angew. Chem. 2020, 132, 13838–13867.
- 8M. Smith, R. L. Fork, S. Cole, Opt. Express 2001, 8, 537–546.
- 9K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, J. Rao, Nat. Nanotechnol. 2014, 9, 233–239.
- 10A. K. Yadav, S. Hernandez, S. Su, J. Chan, Curr. Opin. Chem. Biol. 2020, 57, 114–121.
- 11H. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, Chem. Soc. Rev. 2013, 42, 6128–6185.
- 12
- 12aJ. Zhao, D. Zhong, S. Zhou, J. Mater. Chem. B 2018, 6, 349–365;
- 12bB. Li, M. Zhao, F. Zhang, ACS Mater. Lett. 2020, 2, 905–917.
- 13
- 13aE. D. Cosco, J. R. Caram, O. T. Bruns, D. Franke, R. A. Day, E. P. Farr, M. G. Bawendi, E. M. Sletten, Angew. Chem. Int. Ed. 2017, 56, 13126–13129; Angew. Chem. 2017, 129, 13306–13309;
- 13bM. Y. Lucero, A. K. East, C. J. Reinhardt, A. C. Sedgwick, S. Su, M. C. Lee, J. Chan, J. Am. Chem. Soc. 2021, 143, 7196–7202;
- 13cR. Tian, Q. Zeng, S. Zhu, J. Lau, S. Chandra, R. Ertsey, K. S. Hettie, T. Teraphongphom, Z. Hu, G. Niu, D. O. Kiesewetter, H. Sun, X. Zhang, A. L. Antaris, B. R. Brooks, X. Chen, Sci. Adv. 2019, 5, eaaw0672;
- 13dZ. Lei, C. Sun, P. Pei, S. Wang, D. Li, X. Zhang, F. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8166–8171; Angew. Chem. 2019, 131, 8250–8255;
- 13eZ. Shi, X. Han, W. Hu, H. Bai, B. Peng, L. Ji, Q. Fan, L. Li, W. Huang, Chem. Soc. Rev. 2020, 49, 7533–7567;
- 13fM. M. M. Swamy, Y. Murai, K. Monde, S. Tsuboi, T. Jin, Bioconjugate Chem. 2021, 8, 905–917;
- 13gB. Li, M. Zhao, L. Feng, C. Dou, S. Ding, G. Zhou, L. Lu, H. Zhang, F. Chen, X. Li, G. Li, S. Zhao, C. Jiang, Y. Wang, D. Zhao, Y. Cheng, F. Zhang, Nat. Commun. 2020, 11, 3102;
- 13hE. D. C. Hannah, C. Friedman, T. L. Atallah, S. Jia, E. M. Sletten, J. R. Caram, Chem 2021, 7, 3359–3376;
- 13iY. Du, X. Liu, S. Zhu, Front. Chem. 2021, 9, 718709;
- 13jC. Sun, B. Li, M. Zhao, S. Wang, Z. Lei, L. Lu, H. Zhang, L. Feng, C. Dou, D. Yin, H. Xu, Y. Cheng, F. Zhang, J. Am. Chem. Soc. 2019, 141, 19221–19225.
- 14L. Bai, P. Sun, Y. Liu, H. Zhang, W. Hu, W. Zhang, Z. Liu, Q. Fan, L. Li, W. Huang, Chem. Commun. 2019, 55, 10920–10923.
- 15
- 15aY. Fang, J. Shang, D. Liu, W. Shi, X. Li, H. Ma, J. Am. Chem. Soc. 2020, 142, 15271–15275;
- 15bX.-D. Zhang, H. Wang, A. L. Antaris, L. Li, S. Diao, R. Ma, A. Nguyen, G. Hong, Z. Ma, J. Wang, S. Zhu, J. M. Castellano, T. Wyss-Coray, Y. Liang, J. Luo, H. Dai, Adv. Mater. 2016, 28, 6872–6879.
- 16C. Liu, C. N. Scott, Dyes Pigm. 2021, 196, 109792.
- 17
- 17aM. Fu, Y. Xiao, X. Qian, D. Zhao, Y. Xu, Chem. Commun. 2008, 1780–1782;
- 17bQ. A. Best, N. Sattenapally, D. J. Dyer, C. N. Scott, M. E. McCarroll, J. Am. Chem. Soc. 2013, 135, 13365–13370;
- 17cY. Kushida, T. Nagano, K. Hanaoka, Analyst 2015, 140, 685–695;
- 17dA. N. Butkevich, G. Y. Mitronova, S. C. Sidenstein, J. L. Klocke, D. Kamin, D. N. H. Meineke, E. D'Este, P.-T. Kraemer, J. G. Danzl, V. N. Belov, S. W. Hell, Angew. Chem. Int. Ed. 2016, 55, 3290–3294; Angew. Chem. 2016, 128, 3350–3355;
- 17eJ. Li, Y. Dong, R. Wei, G. Jiang, C. Yao, M. Lv, Y. Wu, S. H. Gardner, F. Zhang, M. Y. Lucero, J. Huang, H. Chen, G. Ge, J. Chan, J. Chen, H. Sun, X. Luo, X. Qian, Y. Yang, J. Am. Chem. Soc. 2022, 144, 14351–14362;
- 17fA. East, M. Lee, L. Smaga, C. Jiang, J. Chan, ChemRxiv 2022.
- 18A. Fukazawa, S. Suda, M. Taki, E. Yamaguchi, M. Grzybowski, Y. Sato, T. Higashiyama, S. Yamaguchi, Chem. Commun. 2016, 52, 1120–1123.
- 19J. Liu, Y.-Q. Sun, H. Zhang, H. Shi, Y. Shi, W. Guo, ACS Appl. Mater. Interfaces 2016, 8, 22953–22962.
- 20
- 20aL. Yuan, W. Lin, Y. Yang, H. Chen, J. Am. Chem. Soc. 2012, 134, 1200–1211;
- 20bY.-J. Gong, X.-B. Zhang, G.-J. Mao, L. Su, H.-M. Meng, W. Tan, S. Feng, G. Zhang, Chem. Sci. 2016, 7, 2275–2285.
- 21Y. Shi, W. Yuan, Q. Liu, M. Kong, Z. Li, W. Feng, K. Hu, F. Li, ACS Mater. Lett. 2019, 1, 418–424.
- 22I. Rajapaksha, H. Chang, Y. Xiong, S. Marder, S. R. Gwaltney, C. N. Scott, J. Org. Chem. 2020, 85, 12108–12116.
- 23C. S. L. Rathnamalala, N. W. Pino, B. S. Herring, M. Hooper, S. R. Gwaltney, J. Chan, C. N. Scott, Org. Lett. 2021, 23, 7640–7644.
- 24C. S. L. Rathnamalala, J. N. Gayton, A. L. Dorris, S. A. Autry, W. Meador, N. I. Hammer, J. H. Delcamp, C. N. Scott, J. Org. Chem. 2019, 84, 13186–13193.
- 25
- 25aT. L. Kinnibrugh, S. Salman, Y. A. Getmanenko, V. Coropceanu, W. W. Porter, T. V. Timofeeva, A. J. Matzger, J.-L. Brédas, S. R. Marder, S. Barlow, Organometallics 2009, 28, 1350–1357;
- 25bG. Qian, Z. Y. Wang, Chem. Asian J. 2010, 5, 1006–1029.
- 26J. B. Grimm, A. K. Muthusamy, Y. Liang, T. A. Brown, W. C. Lemon, R. Patel, R. Lu, J. J. Macklin, P. J. Keller, N. Ji, L. D. Lavis, Nat. Methods 2017, 14, 987–994.
- 27D. Liu, Z. He, Y. Zhao, Y. Yang, W. Shi, X. Li, H. Ma, J. Am. Chem. Soc. 2021, 143, 17136–17143.
- 28
- 28aA. K. Yadav, M. C. Lee, M. Y. Lucero, S. Su, C. J. Reinhardt, J. Chan, ACS Cent. Sci. 2022, 8, 461–472;
- 28bC. J. Reinhardt, R. Xu, J. Chan, Chem. Sci. 2020, 11, 1587–1592;
- 28cC. J. Reinhardt, J. Chan, Biochemistry 2018, 57, 194–199.
- 29H. Zheng, G. Q. Shang, S. Y. Yang, X. Gao, J. G. Xu, Org. Lett. 2008, 10, 2357–2360.
- 30M. R. McGill, H. Jaeschke, Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1031–1039.
- 31C. R. Gardner, D. E. Heck, C. S. Yang, P. E. Thomas, X.-J. Zhang, G. L. DeGeorge, J. D. Laskin, D. L. Laskin, Hepatology 1998, 27, 748–754.
- 32F. Bai, W. Du, X. Liu, L. Su, Z. Li, T. Chen, X. Ge, Q. Li, H. Yang, J. Song, Anal. Chem. 2021, 93, 15279–15287.
- 33X. Liu, Q. Yan, K. L. Baskerville, J. L. Zweier, J. Biol. Chem. 2007, 282, 8831–8836.
- 34R. Park, W. J. Leach, A. I. Arieff, Am. J. Physiol. 1979, 236, F240–245.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.