Low-Frequency Sub-Terahertz Absorption in HgII−XCN−FeII (X=S, Se) Coordination Polymers
Guanping Li
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Data curation (equal), Formal analysis (equal), Investigation (lead), Project administration (equal), Validation (equal), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Dr. Olaf Stefanczyk
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (supporting), Funding acquisition (supporting), Investigation (supporting), Project administration (equal), Resources (supporting), Supervision (supporting), Validation (equal), Visualization (supporting), Writing - review & editing (equal)
Search for more papers by this authorDr. Kunal Kumar
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Formal analysis (equal), Funding acquisition (supporting), Investigation (supporting), Project administration (supporting), Validation (supporting), Visualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYuuki Mineo
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Formal analysis (supporting), Investigation (supporting), Visualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Koji Nakabayashi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Funding acquisition (supporting), Investigation (supporting), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shin-ichi Ohkoshi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (lead), Investigation (supporting), Project administration (equal), Resources (lead), Supervision (lead), Visualization (supporting), Writing - review & editing (equal)
Search for more papers by this authorGuanping Li
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Data curation (equal), Formal analysis (equal), Investigation (lead), Project administration (equal), Validation (equal), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Dr. Olaf Stefanczyk
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (supporting), Funding acquisition (supporting), Investigation (supporting), Project administration (equal), Resources (supporting), Supervision (supporting), Validation (equal), Visualization (supporting), Writing - review & editing (equal)
Search for more papers by this authorDr. Kunal Kumar
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Formal analysis (equal), Funding acquisition (supporting), Investigation (supporting), Project administration (supporting), Validation (supporting), Visualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorYuuki Mineo
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Formal analysis (supporting), Investigation (supporting), Visualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorDr. Koji Nakabayashi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Funding acquisition (supporting), Investigation (supporting), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Shin-ichi Ohkoshi
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
Contribution: Conceptualization (equal), Data curation (equal), Funding acquisition (lead), Investigation (supporting), Project administration (equal), Resources (lead), Supervision (lead), Visualization (supporting), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Self-assembly FeII complexes of phenazine (Phen), quinoxaline (Qxn), and 4,4′-trimethylenedipyridine (Tmp) with tetrahedral building blocks of [HgII(XCN)4]2− (X=S or Se) formed six new high-dimensional frameworks with the general formula of [Fe(L)m][Hg(XCN)4]⋅solvents (L=Phen, m/X=2/S, 1; L=Qxn, m/X=2/S, 2; L=Qxn, m/X=1/S, 3; L=Qxn, m/X=1/Se, 3-Se; L=Tmp, m/X=1/S, 4; and L=Tmp, m/X=1/Se, 4-Se). 1, 3, and 3-Se show an intense sub-terahertz (sub-THz) absorbance of around 0.60 THz due to vibrations of the solvent molecules coordinated to the FeII ions and crystallization organic molecules. In addition, crystals of 1, 4, and 4-Se display low-frequency Raman scattering with exceptionally low values of 0.44, 0.51, and 0.53 THz, respectively. These results indicate that heavy metal FeII−HgII systems are promising platforms to construct sub-THz absorbers.
Conflict of interest
The authors declare no conflict of interest
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Mittleman in Sensing with Terahertz Radiation, Springer Series in Optical Sciences, Berlin, 2003, pp. 39–153;
10.1007/978-3-540-45601-8_2 Google Scholar
- 1bK. Sakai in Terahertz Optoelectronics, Springer, Berlin, 2005, pp. 203–270;
- 1cD. Saeedkia in Handbook of Terahertz Technology for Imaging, Sensing and Communications, 1st ed., Woodhead Publishing, Cambridge, 2013, pp. 217–489.
10.1533/9780857096494.2.217 Google Scholar
- 2
- 2aB. Ferguson, X. Zhang, Nat. Mater. 2002, 1, 26–33;
- 2bC. Roth, T. Peppel, K. Fumino, M. Köckerling, R. Ludwig, Angew. Chem. Int. Ed. 2010, 49, 10221–10224; Angew. Chem. 2010, 122, 10419–10423;
- 2cG. Schwaab, F. Sebastiani, M. Havenith, Angew. Chem. Int. Ed. 2019, 58, 3000–3013; Angew. Chem. 2019, 131, 3030–3044;
- 2dW. Kim, T. Kim, S. Kang, Y. Hong, F. Würthner, D. Kim, Angew. Chem. Int. Ed. 2020, 59, 8571–8578; Angew. Chem. 2020, 132, 8649–8656;
- 2eL. Cheng, Z. Li, D. Zhao, E. E. M. Chia, APL Mater. 2021, 9, 070902;
- 2fY. Ma, Y.-Q. Zhai, Q.-C. Luo, Y.-S. Ding, Y.-Z. Zheng, Angew. Chem. Int. Ed. 2022, 61, e202206022; Angew. Chem. 2022, 134, e202206022.
- 3
- 3aM. Tonouchi, Nat. Photonics 2007, 1, 97–105;
- 3bP. U. Jepsen, D. Cooke, M. Koch, Laser Photonics Rev. 2011, 5, 124–166;
- 3cD. Zhao, J. M. Skelton, H. Hu, C. La-o-vorakiat, J. Zhu, R. A. Marcus, M.-E. Michel-Beyerle, Y. M. Lam, A. Walsh, E. E. M. Chia, Appl. Phys. Lett. 2017, 111, 201903;
- 3dL. Yang, T. Guo, X. Zhang, S. Cao, X. Ding, Anal. Chem. 2018, 37, 20170021;
- 3eD. Kissinger, G. Kahmen, R. Weigel, IEEE Trans. Microwave Theory Tech. 2021, 69, 4541–4560.
- 4
- 4aK. Wang, D. M. Mittleman, Nature 2004, 432, 376–379;
- 4bS. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, Nat. Photonics 2013, 7, 977–981;
- 4cH. Shams, M. J. Fice, K. Balakier, C. C. Renaud, F. van Dijk, A. J. Seeds, Opt. Express 2014, 22, 23465–23472;
- 4dT. Nagatsuma, G. Ducournau, C. C. Renaud, Nat. Photonics 2016, 10, 371–379;
- 4eJ. Li, W. Lu, J. Suhr, H. Chen, J. Q. Xiao, T.-W. Chou, Sci. Rep. 2017, 7, 2349;
- 4fS. Dang, O. Amin, B. Shihada, M.-S. Alouini, Nat. Electron. 2020, 3, 20–29.
- 5
- 5aS. Wöhlert, M. Wriedt, T. Fic, Z. Tomkowicz, W. Haase, C. Näther, Inorg. Chem. 2013, 52, 1061–1068;
- 5bM. Estrader, J. Salinas Uber, L. A. Barrios, J. Garcia, P. Lloyd-Williams, O. Roubeau, S. J. Teat, G. Aromi, Angew. Chem. Int. Ed. 2017, 56, 15622–15627; Angew. Chem. 2017, 129, 15828–15833;
- 5cC. D. Mekuimemba, F. Conan, A. J. Mota, M. A. Palacios, E. Colacio, S. Triki, Inorg. Chem. 2018, 57, 2184–2192;
- 5dT. Boonprab, S. J. Lee, S. G. Telfer, K. S. Murray, W. Phonsri, G. Chastanet, E. Collet, Angew. Chem. Int. Ed. 2019, 58, 11811–11815; Angew. Chem. 2019, 131, 11937–11941;
- 5eX.-Q. Chen, Y.-D. Cai, Y.-S. Ye, M.-L. Tong, X. Bao, Inorg. Chem. Front. 2019, 6, 2194–2199;
- 5fA. Djemel, O. Stefanczyk, C. Desplanches, K. Kumar, R. Delimi, F. Benaceur, S. Ohkoshi, G. Chastanet, Inorg. Chem. Front. 2021, 8, 3210–3221;
- 5gK. S. Kumar, M. Ruben, Angew. Chem. Int. Ed. 2021, 60, 7502–7521; Angew. Chem. 2021, 133, 7578–7598.
- 6
- 6aS. Decurtins, P. Gutlich, C. P. Kohler, H. Spiering, A. Hauser, Chem. Phys. Lett. 1984, 105, 1–4;
- 6bS. Bonhommeau, T. Guillon, L. M. L. Daku, P. Demont, J. S. Costa, J.-F. Létard, G. Molnár, A. Bousseksou, Angew. Chem. Int. Ed. 2006, 45, 1625–1629; Angew. Chem. 2006, 118, 1655–1659;
- 6cJ.-F. Létard, J. Mater. Chem. 2006, 16, 2550–2559;
- 6dS. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 2011, 3, 564–569;
- 6eA. Bousseksou, G. Molnar, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 2011, 40, 3313–3335;
- 6fS. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, Nat. Photonics 2014, 8, 65–71;
- 6gC. Bartual-Murgui, L. Piñeiro-López, F. J. Valverde-Muñoz, M. C. Muñoz, M. Seredyuk, J. A. Real, Inorg. Chem. 2017, 56, 13535–13546.
- 7
- 7aS. Titos-Padilla, J. M. Herrera, X.-W. Chen, J. J. Delgado, E. Colacio, Angew. Chem. Int. Ed. 2011, 50, 3290–3293; Angew. Chem. 2011, 123, 3348–3351;
- 7bJ. Y. Ge, Z. Chen, L. Zhang, X. Liang, J. Su, M. Kurmoo, J. L. Zuo, Angew. Chem. Int. Ed. 2019, 58, 8789–8793; Angew. Chem. 2019, 131, 8881–8885;
- 7cB. Benaicha, K. Van Do, A. Yangui, N. Pittala, A. Lusson, M. Sy, G. Bouchez, H. Fourati, C. J. Gómez-García, S. Triki, K. Boukheddaden, Chem. Sci. 2019, 10, 6791–6798;
- 7dJ. Yuan, M. J. Liu, S. Q. Wu, X. Zhu, N. Zhang, O. Sato, H. Z. Kou, Inorg. Chem. Front. 2019, 6, 1170–1176;
- 7eT. Lathion, A. Fürstenberg, C. Besnard, A. Hauser, A. Bousseksou, C. Piguet, Inorg. Chem. 2020, 59, 1091–1103;
- 7fJ. J. Zakrzewski, M. Liberka, M. Zychowicz, S. Chorazy, Inorg. Chem. Front. 2021, 8, 452–483;
- 7gX.-R. Wu, Z.-K. Liu, M. Zeng, M.-X. Chen, J. Tao, S.-Q. Wu, H.-Z. Kou, Sci. China Chem. 2022, 65, 1569–1576;
- 7hM. K. Javed, A. Sulaiman, M. Yamashita, Z.-Y. Li, Coord. Chem. Rev. 2022, 467, 214625.
- 8
- 8aS. Ohkoshi, K. Arai, Y. Sato, K. Hashimoto, Nat. Mater. 2004, 3, 857–861;
- 8bS. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem. Int. Ed. 2007, 46, 2059–2062; Angew. Chem. 2007, 119, 2105–2108;
- 8cM. Ohba, K. Yoneda, G. Agustí, M. C. Muñoz, A. B. Gaspar, J. A. Real, M. Yamasaki, H. Ando, Y. Nakao, S. Sakaki, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4767–4771; Angew. Chem. 2009, 121, 4861–4865;
- 8dX. Bao, H. J. Shepherd, L. Salmon, G. Molnár, M.-L. Tong, A. Bousseksou, Angew. Chem. Int. Ed. 2013, 52, 1198–1202; Angew. Chem. 2013, 125, 1236–1240;
- 8eJ. E. Clements, J. R. Price, S. M. Neville, C. J. Kepert, Angew. Chem. Int. Ed. 2014, 53, 10164–10168; Angew. Chem. 2014, 126, 10328–10332;
- 8fJ. E. Clements, J. R. Price, S. M. Neville, C. J. Kepert, Angew. Chem. Int. Ed. 2016, 55, 15105–15109; Angew. Chem. 2016, 128, 15329–15333;
- 8gL. Piñeiro-López, F. J. Valverde-Muñoz, M. Seredyuk, M. C. Muñoz, M. Haukka, J. A. Real, Inorg. Chem. 2017, 56, 7038–7047;
- 8hC.-J. Zhang, K.-T. Lian, S.-G. Wu, G.-Z. Huang, Z.-P. Ni, M.-L. Tong, Inorg. Chem. Front. 2020, 7, 911–917;
- 8iA. Mähringer, M. Döblinger, M. Hennemann, C. Gruber, D. Fehn, P. I. Scheurle, P. Hosseini, I. Santourian, A. Schirmacher, J. M. Rotter, G. Wittstock, K. Meyer, T. Clark, T. Bein, D. D. Medina, Angew. Chem. Int. Ed. 2021, 60, 18065–18072; Angew. Chem. 2021, 133, 18213–18220.
- 9
- 9aP. J. van Koningsbruggen, Y. Maeda, H. Oshio, Top. Curr. Chem. 2004, 233, 259–324;
- 9bM. A. Halcrow, Chem. Soc. Rev. 2011, 40, 4119–4142;
- 9cB. Nowicka, T. Korzeniak, O. Stefanczyk, D. Pinkowicz, S. Chorazy, R. Podgajny, B. Sieklucka, Coord. Chem. Rev. 2012, 256, 1946–1971;
- 9dS. Chorazy, R. Podgajny, K. Nakabayashi, J. Stanek, M. Rams, B. Sieklucka, S. Ohkoshi, Angew. Chem. Int. Ed. 2015, 54, 5093–5097; Angew. Chem. 2015, 127, 5182–5186;
- 9eS. Chorazy, T. Charytanowicz, D. Pinkowicz, J. Wang, K. Nakabayashi, S. Klimke, F. Renz, S. Ohkoshi, B. Sieklucka, Angew. Chem. Int. Ed. 2020, 59, 15741–15749; Angew. Chem. 2020, 132, 15871–15879;
- 9fM. Reczyński, D. Pinkowicz, K. Nakabayashi, C. Näther, J. Stanek, M. Kozieł, J. Kalinowska-Tłuścik, B. Sieklucka, S. Ohkoshi, B. Nowicka, Angew. Chem. Int. Ed. 2021, 60, 2330–2338; Angew. Chem. 2021, 133, 2360–2368.
- 10
- 10aB. Viquerat, J. Degert, M. Tondusson, E. Freysz, C. Mauriac, J. F. Létard, Appl. Phys. Lett. 2011, 99, 061908;
- 10bO. I. Kucheriv, V. V. Oliynyk, V. V. Zagorodnii, V. L. Launets, I. A. Gural'skiy, Sci. Rep. 2016, 6, 38334;
- 10cE. Collet, G. Azzolina, T. Ichii, L. Guerin, R. Bertoni, A. Moréac, M. Cammarata, N. Daro, G. Chastanet, J. Kubicki, K. Tanaka, S. F. Matra, Eur. Phys. J. B 2019, 92, 12.
- 11
- 11aS. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki, Angew. Chem. Int. Ed. 2007, 46, 8392–8395; Angew. Chem. 2007, 119, 8544–8547;
- 11bA. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S. Ohkoshi, J. Am. Chem. Soc. 2009, 131, 1170–1173;
- 11cA. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, S. Ohkoshi, Nat. Commun. 2012, 3, 1035;
- 11dA. Namai, M. Yoshikiyo, S. Umeda, T. Yoshida, T. Miyazaki, M. Nakajima, K. Yamaguchi, T. Suemoto, S. Ohkoshi, J. Mater. Chem. C 2013, 1, 5200–5206;
- 11eS. Ohkoshi, A. Namai, T. Yamaoka, M. Yoshikiyo, K. Imoto, T. Nasu, S. Anan, Y. Umeta, K. Nakagawa, H. Tokoro, Sci. Rep. 2016, 6, 27212;
- 11fS. Ohkoshi, K. Imoto, A. Namai, M. Yoshikiyo, S. Miyashita, H. Qiu, S. Kimoto, K. Kato, M. Nakajima, J. Am. Chem. Soc. 2019, 141, 1775–1780;
- 11gS. Ohkoshi, M. Yoshikiyo, K. Imoto, K. Nakagawa, A. Namai, H. Tokoro, Y. Yahagi, K. Takeuchi, F. Jia, S. Miyashita, M. Nakajima, H. Qiu, K. Kato, T. Yamaoka, M. Shirata, K. Naoi, K. Yagishita, H. Doshita, Adv. Mater. 2020, 32, 2004897.
- 12
- 12aS. Ohkoshi, M. Yoshikiyo, A. Namai, K. Nakagawa, K. Chiba, R. Fujiwara, H. Tokoro, Sci. Rep. 2017, 7, 8088;
- 12bT. Yoshida, K. Nakabayashi, H. Tokoro, M. Yoshikiyo, A. Namai, K. Imoto, K. Chiba, S. Ohkoshi, Chem. Sci. 2020, 11, 8989–8998;
- 12cS. Ohkoshi, K. Shiraishi, K. Nakagawa, Y. Ikeda, O. Stefanczyk, H. Tokoro, A. Namai, J. Mater. Chem. C 2021, 9, 3081–3087.
- 13
- 13aL. T. Jin, X. T. Liu, X. Q. Wang, L. N. Wang, G. H. Zhang, L. Y. Zhu, D. Xu, Mater. Res. Innovations 2014, 18, 63–69;
- 13bE. Trzop, D. Zhang, L. Piñeiro-Lopez, F. J. Valverde-Muñoz, M. C. Muñoz, L. Palatinus, L. Guerin, H. Cailleau, J. A. Real, E. Collet, Angew. Chem. Int. Ed. 2016, 55, 8675–8679; Angew. Chem. 2016, 128, 8817–8821;
- 13cD. Zhang, F. J. Valverde-Muñoz, C. Bartual-Murgui, L. Piñeiro-López, M. C. Muñoz, J. A. Real, Inorg. Chem. 2018, 57, 1562–1571;
- 13dW. Lan, F. J. Valverde-Muñoz, X. Hao, Y. Dou, M. C. Muñoz, Z. Zhou, H. Liu, Q. Liu, J. A. Real, D. Zhang, Chem. Commun. 2019, 55, 4607–4610;
- 13eT. Cao, S. Meng, Z. Xu, Y. Xin, Z. Zhou, L. Yang, F. Sun, H. Hao, J. A. Real, D. Zhang, J. Solid State Chem. 2022, 315, 123455;
- 13fM. B. Cingi, A. M. M. Lanfredi, A. Tiripicchio, J. G. Haasnoot, J. Reediijk, Inorg. Chim. Acta 1985, 101, 49–61.
- 14
- 14aK. Kumar, O. Stefanczyk, K. Nakabayashi, K. Imoto, Y. Oki, S. Ohkoshi, Adv. Opt. Mater. 2022, 10, 2101721;
- 14bK. Kumar, O. Stefanczyk, K. Nakabayashi, Y. Mineo, S. Ohkoshi, Int. J. Mol. Sci. 2022, 23, 6051;
- 14cK. Kumar, O. Stefanczyk, S. Chorazy, K. Nakabayashi, S. Ohkoshi, Angew. Chem. Int. Ed. 2022, 61, e202201265; Angew. Chem. 2022, 134, e202201265;
- 14dK. Kumar, O. Stefanczyk, S. Chorazy, K. Nakabayashi, S. Ohkoshi, Adv. Opt. Mater. 2022, 10, 2201675.
- 15J.-P. Farges, Organic conductors: fundamentals and applications, Marcel Dekker, New York, 1994, pp. 25–75.
- 16Deposition Numbers 2210955 (for 1), 2210956 (for 2), 2210957 (for 3), and 2210958 (for 4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 17
- 17aR. Kinugawa, K. Imoto, Y. Futakawa, S. Shimizu, R. Fujiwara, M. Yoshikiyo, A. Namai, S. Ohkoshi, Adv. Eng. Mater. 2021, 23, 2001473;
- 17bA. Namai, S. Kurahashi, T. Goto, S. Ohkoshi, IEEE Trans. Magn. 2012, 48, 4386–4389;
- 17cS. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim, K. S. Churn, IEEE Trans. Magn. 1991, 27, 5462–5464.
- 18
- 18aL. Liang, J. Zhang, B. G. Sumpter, Q.-H. Tan, P.-H. Tan, V. Meunier, ACS Nano 2017, 11, 11777–11802;
- 18bM.-L. Lin, J.-B. Wu, X.-L. Liu, P.-H. Tan, J. Raman Spectrosc. 2018, 49, 19–30;
- 18cC. Nims, B. Cron, M. Wetherington, J. Macalady, J. Cosmidis, Sci. Rep. 2019, 9, 7971;
- 18dM. Kato, Y. Shichibu, K. Ogura, M. Iwasaki, M. Sugiuchi, K. Konishi, I. Yagi, J. Phys. Chem. Lett. 2020, 11, 7996–8001.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.