A Forward Vision for Chemodynamic Therapy: Issues and Opportunities
Dr. Peiran Zhao
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Huiyan Li
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wenbo Bu
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorDr. Peiran Zhao
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Huiyan Li
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Wenbo Bu
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433 P.R. China
Search for more papers by this authorAbstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1Y. Dai, C. Xu, X. Sun, X. Chen, Chem. Soc. Rev. 2017, 46, 3830–3852.
- 2
- 2aI. de Lázaro, D. J. Mooney, Nat. Mater. 2021, 20, 1469–1479;
- 2bB. Yang, Y. Chen, J. Shi, Adv. Mater. 2019, 31, 1901778;
- 2cP. Liu, M. Huo, J. Shi, CCS Chem. 2021, 3, 2445–2463.
- 3C. Zhang, W. Bu, D. Ni, S. Zhang, Q. Li, Z. Yao, J. Zhang, H. Yao, Z. Wang, J. Shi, Angew. Chem. Int. Ed. 2016, 55, 2101–2106; Angew. Chem. 2016, 128, 2141–2146.
- 4Z. Tang, Y. Liu, M. He, W. Bu, Angew. Chem. Int. Ed. 2019, 58, 946–956; Angew. Chem. 2019, 131, 958–968.
- 5
- 5aX. Wang, X. Zhong, Z. Liu, L. Cheng, Nano Today 2020, 35, 100946;
- 5bP. Manivasagan, A. Joe, H.-W. Han, T. Thambi, M. Selvaraj, K. Chidambaram, J. Kim, E.-S. Jang, Mater.Today Bio 2022, 13, 100197;
- 5cZ. Tang, P. Zhao, H. Wang, Y. Liu, W. Bu, Chem. Rev. 2021, 121, 1981–2019.
- 6Y. Zhang, M. Zhou, J. Hazard. Mater. 2019, 362, 436–450.
- 7
- 7aJ. Kiwi, A. Lopez, V. Nadtochenko, Environ. Sci. Technol. 2000, 34, 2162–2168;
- 7bA. Nair, P. Chauhan, B. Saha, K. F. Kubatzky, Int. J. Mol. Sci. 2019, 20, 3292.
- 8Y. Zhou, S. Fan, L. Feng, X. Huang, X. Chen, Adv. Mater. 2021, 33, 2104223.
- 9Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Appl. Catal. B 2019, 255, 117739.
- 10S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 2015, 115, 13051–13092.
- 11X. Chen, J. Song, X. Chen, H. Yang, Chem. Soc. Rev. 2019, 48, 3073–3101.
- 12Q. Chen, C. Liang, X. Sun, J. Chen, Z. Yang, H. Zhao, L. Feng, Z. Liu, Proc. Natl. Acad. Sci. USA 2017, 114, 5343–5348.
- 13J. E. House, Principles of chemical kinetics, Academic press, 2007, Ch. 1, pp. 2–30.
- 14J. J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84.
- 15A. A. Burbano, D. D. Dionysiou, M. T. Suidan, T. L. Richardson, Water Res. 2005, 39, 107–118.
- 16B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Nat. Rev. Cancer 2011, 11, 671–677.
- 17X. Chen, H. Zhang, M. Zhang, P. Zhao, R. Song, T. Gong, Y. Liu, X. He, K. Zhao, W. Bu, Adv. Funct. Mater. 2020, 30, 1908365.
- 18P. Zhao, Z. Tang, X. Chen, Z. He, X. He, M. Zhang, Y. Liu, D. Ren, K. Zhao, W. Bu, Mater. Horiz. 2019, 6, 369–374.
- 19Q. Sun, Z. Wang, B. Liu, F. He, S. Gai, P. Yang, D. Yang, C. Li, J. Lin, Coord. Chem. Rev. 2022, 451, 214267.
- 20P. V. Nidheesh, R. Gandhimathi, S. T. Ramesh, Environ. Sci. Pollut. Res. Int. 2013, 20, 2099–2132.
- 21
- 21aL. Chen, S. Xing, Y. Lei, Q. Chen, Z. Zou, K. Quan, Z. Qing, J. Liu, R. Yang, Angew. Chem. Int. Ed. 2021, 60, 23534–23539;
- 21bY. Sang, F. Cao, W. Li, L. Zhang, Y. You, Q. Deng, K. Dong, J. Ren, X. Qu, J. Am. Chem. Soc. 2020, 142, 5177–5183.
- 22
- 22aZ. Tang, S. Wu, P. Zhao, H. Wang, D. Ni, H. Li, X. Jiang, Y. Wu, Y. Meng, Z. Yao, W. Cai, W. Bu, Adv. Sci. 2022, 2201232;
- 22bC. Liu, Y. Cao, Y. Cheng, D. Wang, T. Xu, L. Su, X. Zhang, H. Dong, Nat. Commun. 2020, 11, 1735;
- 22cZ. Tang, Y. Liu, D. Ni, J. Zhou, M. Zhang, P. Zhao, B. Lv, H. Wang, D. Jin, W. Bu, Adv. Mater. 2020, 32, 1904011.
- 23B. Zhu, H. Han, W.-K. Su, C. Yu, X. Jiang, Adv. Synth. Catal. 2021, 363, 484–489.
- 24H.-Y. Chen, ACS Omega 2019, 4, 14105–14113.
- 25Z. Qi, T.-T. Lim, S. A. Snyder, S. You, F. Sun, T. An, ACS ES&T Water 2022, 2, 778–785.
- 26H. L. Roderick, S. J. Cook, Nat. Rev. Cancer 2008, 8, 361–375.
- 27Y. Baba, T. Yatagai, T. Harada, Y. Kawase, Chem. Eng. J. 2015, 277, 229–241.
- 28C. Xue, Y. Peng, A. Chen, L. Peng, S. Luo, J. Colloid Interface Sci. 2021, 582, 22–29.
- 29M.-H. ZHANG, H. DONG, L. ZHAO, D.-X. WANG, D. MENG, Sci. Total Environ. 2019, 670, 110–121.
- 30N. R. Perron, J. L. Brumaghim, Cell Biochem. Biophys. 2009, 53, 75–100.
- 31M. Tokumura, R. Morito, R. Hatayama, Y. Kawase, Appl. Catal. B 2011, 106, 565–576.
- 32M. Umar, H. A. Aziz, M. S. Yusoff, Waste Manage. 2010, 30, 2113–2121.
- 33L. P. Hammett, J. Am. Chem. Soc. 1937, 59, 96–103.
- 34L. Su, P. Wang, X. Ma, J. Wang, S. Zhan, Angew. Chem. Int. Ed. 2021, 60, 21261–21266.
- 35X. Zhou, M.-K. Ke, G.-X. Huang, C. Chen, W. Chen, K. Liang, Y. Qu, J. Yang, Y. Wang, F. Li, H.-Q. Yu, Y. Wu, Proc. Natl. Acad. Sci. USA 2022, 119, e2119492119.
- 36P. Zhao, Y. Jiang, Z. Tang, Y. Li, B. Sun, Y. Wu, J. Wu, Y. Liu, W. Bu, Angew. Chem. Int. Ed. 2021, 60, 8905–8912.
- 37H. Wang, Y. Wang, J. Zhang, X. Liu, S. Tao, Nano Energy 2021, 84, 105943.
- 38C.-X. Zhao, B.-Q. Li, J.-N. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4448–4463; Angew. Chem. 2021, 133, 4496–4512.
- 39N. Lehnert, R. Y. N. Ho, L. Que, E. I. Solomon, J. Am. Chem. Soc. 2001, 123, 12802–12816.
- 40N. D. Donahue, H. Acar, S. Wilhelm, Adv. Drug. Deliv. Rev. 2019, 143, 68–96.
- 41W. Jiang, B. Y. Kim, J. T. Rutka, W. C. Chan, Nat. Nanotechnol. 2008, 3, 145–150.
- 42Y. Y. Yuan, C. Q. Mao, X. J. Du, J. Z. Du, F. Wang, J. Wang, Adv. Mater. 2012, 24, 5476–5480.
- 43
- 43aL. Zhang, D. Wang, K. Yang, D. Sheng, B. Tan, Z. Wang, H. Ran, H. Yi, Y. Zhong, H. Lin, Y. Chen, Adv. Sci. 2018, 5, 1800049;
- 43bT. Lang, Y. Liu, Z. Zheng, W. Ran, Y. Zhai, Q. Yin, P. Zhang, Y. Li, Adv. Mater. 2019, 31, 1806202;
- 43cC. H. Whang, J. Hong, D. Kim, H. Ryu, W. Jung, Y. Son, H. Keum, J. Kim, H. Shin, E. Moon, I. Noh, H. S. Lee, S. Jon, Adv. Mater. 2022, 34, 2203993.
- 44C. Wang, Y. Wang, Y. Li, B. Bodemann, T. Zhao, X. Ma, G. Huang, Z. Hu, R. J. DeBerardinis, M. A. White, J. Gao, Nat. Commun. 2015, 6, 8524.
- 45
- 45aV. Francia, C. Reker-Smit, A. Salvati, Nano Lett. 2022, 22, 3118–3124;
- 45bJ. Lin, A. Alexander-Katz, ACS Nano 2013, 7, 10799–10808.
- 46S. Ray, A. Kassan, A. R. Busija, P. Rangamani, H. H. Patel, Am. J. Physiol. Cell Physiol. 2016, 310, C181–192.
- 47A. N. Bondar, Chem. Rev. 2019, 119, 5535–5536.
- 48B. Kwa, C. Jla, Y. A. Yan, E. Bld, F. Yw, F. Cw, B. Hl, A. Yl, L. A. Yang, F. Xc, Nano Today 2022, 42, 101355.
- 49D. A. Pratt, K. A. Tallman, N. A. Porter, Acc. Chem. Res. 2011, 44, 458–467.
- 50
- 50aA. Gatin, I. Billault, P. Duchambon, G. Van der Rest, C. Sicard-Roselli, Free Radical Biol. Med. 2021, 162, 461–470;
- 50bF. G. Meng, Z. Y. Zhang, BBA Proteins Proteom. 2013, 1834, 464–469;
- 50cF. Liu, S. Lai, H. Tong, P. S. J. Lakey, M. Shiraiwa, M. G. Weller, U. Pöschl, C. J. Kampf, Anal. Bioanal. Chem. 2017, 409, 2411–2420.
- 51
- 51aM. Tyagi, A. Bauri, S. Chattopadhyay, B. Patro, Free Radical Bio. Med. 2020, 148, 182–199;
- 51bT. Sharif, C. Dai, E. Martell, M. Ghassemi-Rad, M. Hanes, P. Murphy, B. Kennedy, C. Venugopal, M. Subapanditha, C. Giacomantonio, P. Marcato, S. Singh, S. Gujar, Clin. Cancer Res. 2019, 25, 2001–2017;
- 51cS. Saul, C. Gibhardt, B. Schmidt, A. Lis, B. Pasieka, D. Conrad, P. Jung, R. Gaupp, B. Wonnenberg, E. Diler, H. Stanisz, T. Vogt, E. Schwarz, M. Bischoff, M. Herrmann, T. Tschernig, R. Kappl, H. Rieger, B. Niemeyer, I. Bogeski, Sci. Signaling 2016, 9(418): ra26;
- 51dI. Hay, G. Fearnley, P. Rios, M. Köhn, H. Sharpe, J. Deane, Nat. Commun. 2020, 11, 3219.
- 52A. J. Ewald, M. Egeblad, Nature 2014, 511, 298–299.
- 53
- 53aN. A. Espinoza-Sánchez, M. Götte, Semin. Cancer Biol. 2020, 62, 48–67;
- 53bS. Ghasempour, S. A. Freeman, FEBS J. 2021. DOI: 10.1111/febs.16236.
- 54
- 54aK. Senior, Lancet Oncol. 2002, 3, 129;
- 54bA. Seelig, Front. Oncol. 2020, 10, 576559.
- 55
- 55aJ. Cadet, K. J. A. Davies, Free Radical Biol. Med. 2017, 107, 2–12;
- 55bS. Kanvah, J. Joseph, G. B. Schuster, R. N. Barnett, C. L. Cleveland, U. Landman, Acc. Chem. Res. 2010, 43, 280–287.
- 56B. Halliwell, A. Adhikary, M. Dingfelder, M. Dizdaroglu, Chem. Soc. Rev. 2021, 50, 8355–8360.
- 57A. P. Anderson, X. Luo, W. Russell, Y. W. Yin, Nucleic Acids Res. 2020, 48, 817–829.
- 58R. Sigel, H. Sigel, Acc. Chem. Res. 2010, 43, 974–984.
- 59
- 59aY. Yu, S. Fan, J. Song, S. Tashiro, S. Onodera, T. Ikejima, Biol. Pharm. Bull. 2012, 35, 2148–2159;
- 59bA. Tasdogan, J. Ubellacker, S. Morrison, Cancer Discov. 2021, 11, 2682–2692.
- 60
- 60aL. Su, J. Zhang, H. Gomez, R. Murugan, X. Hong, D. Xu, F. Jiang, Z. Peng, Oxidative Med. Cell. Longev. 2019, 2019, 5080843;
- 60bK. Hadian, B. R. Stockwell, Cell 2020, 181, 1188–1188.e1181.
- 61S. W. Ryter, H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, A. M. Choi, Antioxid. Redox Signal. 2007, 9, 49–89.
- 62W. W.-Y. Yim, N. Mizushima, Cell Discov. 2020, 6, 6.
- 63H. Chang, Z. Zou, J. Hematol. Oncol. 2020, 13, 159.
- 64J. Sironi, E. Aranda, L. Nordstrøm, E. Schwartz, Mol. Pharmacol. 2019, 95, 127–138.
- 65S. Orrenius, V. Gogvadze, B. Zhivotovsky, Annu. Rev. Pharmacol. Toxicol. 2007, 47, 143–183.
- 66H. Sies, D. P. Jones, Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383.
- 67R. Sano, J. C. Reed, BBA Mol. Cell Res. 2013, 1833, 3460–3470.
- 68
- 68aM. Liu, Y. Chen, Y. Guo, H. Yuan, T. Cui, S. Yao, S. Jin, H. Fan, C. Wang, R. Xie, W. He, Z. Guo, Nat. Commun. 2022, 13, 2179;
- 68bS. Nakagomi, M. J. Barsoum, E. Bossy-Wetzel, C. Sütterlin, V. Malhotra, S. A. Lipton, Neurobiol. Dis. 2008, 29, 221–231.
- 69
- 69aP. Bouwman, J. Jonkers, Nat. Rev. Cancer 2012, 587–598;
- 69bL. Galluzzi, J. M. Bravo-San Pedro, G. Kroemer, Nat. Cell Biol. 2014, 16, 728–736.
- 70K. Ferri, G. Kroemer, Nat. Cell Biol. 2001, 3, E255–263.
- 71
- 71aS. He, J. Liu, C. Zhang, J. Wang, K. Pu, Angew. Chem. Int. Ed. 2022, 61, e202116669; C. Zhang, K. Pu, Chem. Soc. Rev. 2020, 49, 4234–4253.
- 72Y. Zhu, W. Fan, W. Feng, Y. Wang, S. Liu, Z. Dong, X. Li, J. Hazard. Mater. 2021, 414, 125517.
- 73D. Senft, Z. Ronai, Trends Biochem. Sci. 2015, 40, 141–148.
- 74R. Hodson, Nature 2016, 537, S49–S49.
- 75
- 75aM. Yang, J. Li, P. Gu, X. Fan, Bioact. Mater. 2021, 6, 1973–1987;
- 75bG. Yeldag, A. Rice, A. Del Río Hernández, Cancers 2018, 10, 471.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.