A Lamellar MXene (Ti3C2Tx)/PSS Composite Membrane for Fast and Selective Lithium-Ion Separation
Zong Lu
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorYing Wu
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorLi Ding
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanying Wei
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haihui Wang
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
Search for more papers by this authorZong Lu
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorYing Wu
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
These authors contributed equally to this work.
Search for more papers by this authorLi Ding
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yanying Wei
School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Haihui Wang
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084 Beijing, China
Search for more papers by this authorAbstract
A two-dimensional (2D) laminar membrane with Li+ selective transport channels is obtained by stacking MXene nanosheets with the introduction of poly(sodium 4-styrene sulfonate) (PSS) with active sulfonate sites, which exhibits excellent Li+ selectivity from ionic mixture solutions of Na+, K+, and Mg2+. The Li+ permeation rate through the MXene@PSS composite membrane is as high as 0.08 mol m−2 h−1, while the Li+/Mg2+, Li+/Na+, and Li+/K+ selectivities are 28, 15.5, and 12.7, respectively. Combining the simulation and experimental results, we further confirm that the highly selective rapid transport of partially dehydrated Li+ within subnanochannels can be attributed to the precisely controlled interlayer spacing and the relatively weaker ion-terminal (−SO3−) interaction. This study deepens the understanding of ion-selective permeation in confined channels and provides a general membrane design concept.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202108801-sup-0001-misc_information.pdf9.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Ebensperger, P. Maxwell, C. Moscoso, Resour. Policy 2005, 30, 218–231.
- 2
- 2aG. Wu, M. Huang, Chem. Rev. 2006, 106, 2596–2616;
- 2bZ. Song, M. Fan, Y. Liang, F. Zhou, W. Liu, Tribol. Lett. 2013, 49, 127–133.
- 3
- 3aM. R. Palacín, A. de Guibert, Science 2016, 351, 1253292;
- 3bY. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Angew. Chem. Int. Ed. 2016, 55, 15120–15124; Angew. Chem. 2016, 128, 15344–15348.
- 4P. K. Choubey, M.-s. Kim, R. R. Srivastava, J.-c. Lee, J.-Y. Lee, Miner. Eng. 2016, 89, 119–137.
- 5S. Tsuchiya, Y. Nakatani, R. Ibrahim, S. Ogawa, J. Am. Chem. Soc. 2002, 124, 4936–4937.
- 6
- 6aJ. W. An, D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, T. Tran, Hydrometallurgy 2012, 117, 64–70;
- 6bJ.-C. Zhang, M. Wang, J. Ding, J. Salt Lake Res. 2005, 13, 42–48.
- 7
- 7aA. Razmjou, M. Asadnia, E. Hosseini, A. H. Korayem, V. Chen, Nat. Commun. 2019, 10, 1–15;
- 7bR. Taheri, A. Razmjou, G. Szekely, J. Hou, G. R. Ghezelbash, Bioinspiration Biomimetics 2016, 11, 041001;
- 7cQ. Bi, Z. Zhang, C. Zhao, Z. Tao, Water Sci. Technol. 2014, 70, 1690–1694.
- 8
- 8aA. Somrani, A. H. Hamzaoui, M. Pontie, Desalination 2013, 317, 184–192;
- 8bY. Li, Y. Zhao, H. Wang, M. Wang, Desalination 2019, 468, 114081.
- 9
- 9aX.-Y. Nie, S.-Y. Sun, Z. Sun, X. Song, J.-G. Yu, Desalination 2017, 403, 128–135;
- 9bY. Zhao, K. Tang, H. Ruan, L. Xue, B. Van der Bruggen, C. Gao, J. Shen, J. Membr. Sci. 2017, 536, 167–175.
- 10
- 10aT. Hoshino, Desalination 2015, 359, 59–63;
- 10bN. U. Afsar, M. A. Shehzad, M. Irfan, K. Emmanuel, F. Sheng, T. Xu, X. Ren, L. Ge, T. Xu, Desalination 2019, 458, 25–33.
- 11
- 11aB. Mi, Science 2014, 343, 740–742;
- 11bY. Kang, Y. Xia, H. Wang, X. Zhang, Adv. Funct. Mater. 2019, 29, 1902014;
- 11cR. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, R. R. Nair, Science 2014, 343, 752–754;
- 11dY. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356–1359;
- 11eL. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Nature 2017, 550, 380–383.
- 12H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou, L. Jiang, J. Z. Liu, B. D. Freeman, A. J. Hill, H. Wang, Sci. Adv. 2018, 4, eaaq0066.
- 13J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim, R. R. Nair, Nat. Nanotechnol. 2017, 12, 546–550.
- 14Y.-H. Xi, Z. Liu, J. Ji, Y. Wang, Y. Faraj, Y. Zhu, R. Xie, X.-J. Ju, W. Wang, X. Lu, L.-Y. Chu, J. Membr. Sci. 2018, 550, 208–218.
- 15C. E. Ren, K. B. Hatzell, M. Alhabeb, Z. Ling, K. A. Mahmoud, Y. Gogotsi, J. Phys. Chem. Lett. 2015, 6, 4026–4031.
- 16Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li, H. Wang, ACS Nano 2019, 13, 10535–10544.
- 17L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, Y. Wei, J. Caro, H. Wang, Nat. Sustainability 2020, 3, 296–302.
- 18L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L. X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun. 2018, 9, 155.
- 19Z.-K. Li, Y. Wei, X. Gao, L. Ding, Z. Lu, J. Deng, X. Yang, J. Caro, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 9751–9756; Angew. Chem. 2020, 132, 9838–9843.
- 20M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 21
- 21aZ. Chen, J. Wang, D. Pan, Y. Wang, R. Noetzel, H. Li, P. Xie, W. Pei, A. Umar, L. Jiang, N. Li, N. F. de Rooij, G. Zhou, ACS Nano 2018, 12, 2521–2530;
- 21bJ. Wang, Y. Zhang, H. Wu, L. Xiao, Z. Jiang, J. Power Sources 2010, 195, 2526–2533;
- 21cL. Li, N. Zhang, M. Zhang, X. Zhang, Z. Zhang, Dalton Trans. 2019, 48, 1747–1756.
- 22
- 22aK. Chu, Q.-q. Li, Y.-p. Liu, J. Wang, Y.-h. Cheng, Appl. Catal. B 2020, 267, 118693;
- 22bM. Zhang, P. Zhao, P. Li, Y. Ji, G. Liu, W. Jin, ACS Nano 2021, 15, 5209–5220.
- 23X. Zhou, Z. Wang, R. Epsztein, C. Zhan, W. Li, J. D. Fortner, T. A. Pham, J.-H. Kim, M. Elimelech, Sci. Adv. 2020, 6, eabd9045.
- 24
- 24aQ. Wen, D. Yan, F. Liu, M. Wang, Y. Ling, P. Wang, P. Kluth, D. Schauries, C. Trautmann, P. Apel, W. Guo, G. Xiao, J. Liu, J. Xue, Y. Wang, Adv. Funct. Mater. 2016, 26, 5796–5803;
- 24bZ. Li, Y. Liu, Y. Zhao, X. Zhang, L. Qian, L. Tian, J. Bai, W. Qi, H. Yao, B. Gao, J. Liu, W. Wu, H. Qiu, Anal. Chem. 2016, 88, 10002–10010;
- 24cS. Hong, C. Constans, M. V. S. Martins, Y. C. Seow, J. A. G. Carrió, S. Garaj, Nano Lett. 2017, 17, 728–732;
- 24dS. Liang, S. Wang, L. Chen, H. Fang, Sep. Purif. Technol. 2020, 241, 116738;
- 24eS. B. Sigurdardóttir, R. M. DuChanois, R. Epsztein, M. Pinelo, M. Elimelech, J. Membr. Sci. 2020, 603, 117921.
- 25C. Zhang, Y. Mu, W. Zhang, S. Zhao, Y. Wang, J. Membr. Sci. 2020, 596, 117724.
- 26J. Deng, Z. Lu, L. Ding, Z.-K. Li, Y. Wei, J. Caro, H. Wang, Chem. Eng. J. 2021, 408, 127806.
- 27Y. Wang, H. Zhang, Y. Kang, Y. Zhu, G. P. Simon, H. Wang, ACS Nano 2019, 13, 11793–11799.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.