Near-Infrared-Excited Multicolor Afterglow in Carbon Dots-Based Room-Temperature Afterglow Materials
Yihao Zheng
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
These authors contributed equally to this work.
Search for more papers by this authorHaopeng Wei
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
These authors contributed equally to this work.
Search for more papers by this authorPing Liang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorXiaokai Xu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorDr. Xingcai Zhang
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorHuihong Li
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorChenlu Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorProf. Chaofan Hu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorProf. Xuejie Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorProf. Bingfu Lei
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Prof. Wai-Yeung Wong
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057 China
Search for more papers by this authorCorresponding Author
Prof. Yingliang Liu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Prof. Jianle Zhuang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorYihao Zheng
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
These authors contributed equally to this work.
Search for more papers by this authorHaopeng Wei
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
These authors contributed equally to this work.
Search for more papers by this authorPing Liang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorXiaokai Xu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorDr. Xingcai Zhang
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138 USA
School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorHuihong Li
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorChenlu Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Search for more papers by this authorProf. Chaofan Hu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorProf. Xuejie Zhang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorProf. Bingfu Lei
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Prof. Wai-Yeung Wong
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057 China
Search for more papers by this authorCorresponding Author
Prof. Yingliang Liu
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorCorresponding Author
Prof. Jianle Zhuang
Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
Search for more papers by this authorAbstract
Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202108696-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
ange202108696-sup-0001-Video_1.mp43.5 MB | Supporting Information |
ange202108696-sup-0001-Video_2.mp43.2 MB | Supporting Information |
ange202108696-sup-0001-Video_3.mp42.9 MB | Supporting Information |
ange202108696-sup-0001-Video_4.mp4987.3 KB | Supporting Information |
ange202108696-sup-0001-Video_5.mp45.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Kabe, C. Adachi, Nature 2017, 550, 384–387;
- 1bW. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869–885;
- 1cG. Baryshnikov, B. Minaev, H. Agren, Chem. Rev. 2017, 117, 6500–6537;
- 1dT. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 11206–11216; Angew. Chem. 2020, 132, 11302–11312;
- 1eN. Gan, H. Shi, Z. An, W. Huang, Adv. Funct. Mater. 2018, 28, 1802657.
- 2Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690.
- 3
- 3aL. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406–411;
- 3bP. Lehner, C. Staudinger, S. M. Borisov, I. Klimant, Nat. Commun. 2014, 5, 4460;
- 3cH. Li, S. Ye, J. Guo, J. Kong, J. Song, Z. Kang, J. Qu, J. Mater. Chem. C 2019, 7, 10605–10612;
- 3dJ. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S. H. P. Sung, G. Shan, J. W. Y. Lam, Z. Shuai, B. Z. Tang, Nat. Commun. 2018, 9, 2963;
- 3eQ. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Nat. Biotechnol. 2017, 35, 1102–1110.
- 4
- 4aJ. Liu, R. Li, B. Yang, ACS Cent. Sci. 2020, 6, 2179–2195;
- 4bA. Xu, G. Wang, Y. Li, H. Dong, S. Yang, P. He, G. Ding, Small 2020, 16, 2004621;
- 4cK. Jiang, Y. Wang, Z. Li, H. Lin, Mater. Chem. Front. 2020, 4, 386–399;
- 4dY. Sun, X. Zhang, J. Zhuang, H. Zhang, C. Hu, M. Zheng, B. Lei, Y. Liu, Carbon 2020, 165, 306–316.
- 5
- 5aK. Jiang, S. Hu, Y. Wang, Z. Li, H. Lin, Small 2020, 16, 2001909;
- 5bS. Song, L. Sui, K. Liu, Q. Cao, W. Zhao, Y. Liang, C. Lv, J. Zang, Y. Shang, Q. Lou, X. Yang, L. Dong, K. Yuan, C. Shan, Nano Res. 2021, 14, 2231–2240;
- 5cK. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem. Int. Ed. 2018, 57, 6216–6220; Angew. Chem. 2018, 130, 6324–6328;
- 5dY. Sun, S. Liu, L. Sun, S. Wu, G. Hu, X. Pang, A. T. Smith, C. Hu, S. Zeng, W. Wang, Y. Liu, M. Zheng, Nat. Commun. 2020, 11, 5591;
- 5eK. Jiang, X. Gao, X. Feng, Y. Wang, Z. Li, H. Lin, Angew. Chem. Int. Ed. 2020, 59, 1263–1269; Angew. Chem. 2020, 132, 1279–1285;
- 5fY. Liang, S. Gou, K. Liu, W. Wu, C. Guo, S. Lu, J. Zang, X. Wu, Q. Lou, L. Dong, Y. Gao, C. Shan, Nano Today 2020, 34, 100900;
- 5gS. Tao, S. Lu, Y. Geng, S. Zhu, S. A. T. Redfern, Y. Song, T. Feng, W. Xu, B. Yang, Angew. Chem. Int. Ed. 2018, 57, 2393–2398; Angew. Chem. 2018, 130, 2417–2422;
- 5hP. Long, Y. Feng, C. Cao, Y. Li, J. Han, S. Li, C. Peng, Z. Li, W. Feng, Adv. Funct. Mater. 2018, 28, 1800791;
- 5iQ. Feng, Z. Xie, M. Zheng, Chem. Eng. J. 2021, 420, 127647;
- 5jC. Xia, S. Zhu, S. Zhang, Q. Zeng, S. Tao, X. Tian, Y. Li, B. Yang, ACS Appl. Mater. Interfaces 2020, 12, 38593–38601.
- 6
- 6aZ. Tian, D. Li, E. V. Ushakova, V. G. Maslov, D. Zhou, P. Jing, D. Shen, S. Qu, A. L. Rogach, Adv. Sci. 2018, 5, 1800795;
- 6bJ. Zhu, X. Bai, X. Chen, H. Shao, Y. Zhai, G. Pan, H. Zhang, E. V. Ushakova, Y. Zhang, H. Song, A. L. Rogach, Adv. Opt. Mater. 2019, 7, 1801599;
- 6cY. Liu, X. Huang, Z. Niu, D. Wang, H. Gou, Q. Liao, K. Xi, Z. An, X. Jia, Chem. Sci. 2021, 12, 8199–8206;
- 6dJ. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, D. Yue, Nanoscale 2016, 8, 4742–4747;
- 6eY. Deng, D. Zhao, X. Chen, F. Wang, H. Song, D. Shen, Chem. Commun. 2013, 49, 5751–5753.
- 7Y. Gao, H. Zhang, Y. Jiao, W. Lu, Y. Liu, H. Han, X. Gong, S. Shuang, C. Dong, Chem. Mater. 2019, 31, 7979–7986.
- 8Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, J. Shi, Nat. Commun. 2018, 9, 734.
- 9H. Liu, F. Wang, Y. Wang, J. Mei, D. Zhao, ACS Appl. Mater. Interfaces 2017, 9, 18248–18253.
- 10J. Joseph, A. A. Anappara, ChemistrySelect 2017, 2, 4058–4062.
- 11
- 11aB. Wang, Y. Mu, H. Zhang, H. Shi, G. Chen, Y. Yu, Z. Yang, J. Li, J. Yu, ACS Cent. Sci. 2019, 5, 349–356;
- 11bJ. Liu, H. Zhang, N. Wang, Y. Yu, Y. Cui, J. Li, J. Yu, ACS Mater. Lett. 2019, 1, 58–63;
- 11cB. Wang, Y. Yu, H. Zhang, Y. Xuan, G. Chen, W. Ma, J. Li, J. Yu, Angew. Chem. Int. Ed. 2019, 58, 18443–18448; Angew. Chem. 2019, 131, 18614–18619.
- 12
- 12aW. Shi, J. Yao, L. Bai, C. Lu, Adv. Funct. Mater. 2018, 28, 1804961;
- 12bL. Bai, N. Xue, Y. Zhao, X. Wang, C. Lu, W. Shi, Nano Res. 2018, 11, 2034–2045.
- 13
- 13aY. C. Liang, K. K. Liu, X. Y. Wu, Q. Lou, L. Z. Sui, L. Dong, K. J. Yuan, C. X. Shan, Adv. Sci. 2021, 8, 2003433;
- 13bJ. He, Y. Chen, Y. He, X. Xu, B. Lei, H. Zhang, J. Zhuang, C. Hu, Y. Liu, Small 2020, 16, 2005228;
- 13cW. Li, S. Wu, X. Xu, J. Zhuang, H. Zhang, X. Zhang, C. Hu, B. Lei, C. F. Kaminski, Y. Liu, Chem. Mater. 2019, 31, 9887–9894;
- 13dK. Jiang, Y. Wang, C. Cai, H. Lin, Chem. Mater. 2017, 29, 4866–4873.
- 14
- 14aQ. Li, M. Zhou, Q. Yang, Q. Wu, J. Shi, A. Gong, M. Yang, Chem. Mater. 2016, 28, 8221–8227;
- 14bC. Lin, Y. Zhuang, W. Li, T. L. Zhou, R. J. Xie, Nanoscale 2019, 11, 6584–6590.
- 15W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang, J. Zhuang, Y. Liu, B. Lei, C. Hu, Angew. Chem. Int. Ed. 2019, 58, 7278–7283; Angew. Chem. 2019, 131, 7356–7361.
- 16C. Wang, Y. Chen, T. Hu, Y. Chang, G. Ran, M. Wang, Q. Song, Nanoscale 2019, 11, 11967–11974.
- 17
- 17aZ. Xu, X. Sun, P. Ma, Y. Chen, W. Pan, J. Wang, J. Mater. Chem. C 2020, 8, 4557–4563;
- 17bY. Gao, H. Zhang, S. Shuang, C. Dong, Adv. Opt. Mater. 2020, 8, 1901557;
- 17cW. He, X. Sun, X. Cao, ACS Sustainable Chem. Eng. 2021, 9, 4477–4486.
- 18
- 18aG. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 0010;
- 18bH. M. Kim, B. R. Cho, Chem. Rev. 2015, 115, 5014–5055;
- 18cKenry, Y. Duan, B. Liu, Adv. Mater. 2018, 30, 1802394;
- 18dZ. Wang, C. Y. Zhu, S. Y. Yin, Z. W. Wei, J. H. Zhang, Y. N. Fan, J. J. Jiang, M. Pan, C. Y. Su, Angew. Chem. Int. Ed. 2019, 58, 3481–3485; Angew. Chem. 2019, 131, 3519–3523;
- 18eX. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao, Z. Lei, W. Gao, S. Blake, D. De, X. Zeng, N. Kong, X. Zhang, W. Tao, Nat. Commun. 2021, 12, 1124;
- 18fD. Gao, T. Chen, Y. Han, S. Chen, Y. Wang, X. Guo, H. Wang, X. Chen, M. Guo, Y. S. Zhang, G. Hong, X. Zhang, Z. Tian, Z. Yang, Nano-Micro Lett. 2021, 13, 99; Z. Yang, D. Gao, X. Guo, L. Jin, J. Zhang, Y. Wang, S. Chen, X. Zheng, L. Zeng, M. Guo, X. Zhang, Z. Tian, ACS Nano 2020, 14, 17442–17457.
- 19
- 19aL. Ruan, Y. Zhang, Nat. Commun. 2021, 12, 219;
- 19bS. Liu, J. Huang, L. Yan, N. Song, P. Zhang, J. He, B. Zhou, J. Mater. Chem. A 2021, 9, 4007–4017;
- 19cB. Zhou, L. Yan, L. Tao, N. Song, M. Wu, T. Wang, Q. Zhang, Adv. Sci. 2018, 5, 1700667.
- 20T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297–3303.
- 21
- 21aL. Jiang, H. Ding, S. Lu, T. Geng, G. Xiao, B. Zou, H. Bi, Angew. Chem. Int. Ed. 2020, 59, 9986–9991; Angew. Chem. 2020, 132, 10072–10077;
- 21bL. Jiang, H. Ding, M. Xu, X. Hu, S. Li, M. Zhang, Q. Zhang, Q. Wang, S. Lu, Y. Tian, H. Bi, Small 2020, 16, 2000680;
- 21cH. Ding, J. Xu, L. Jiang, C. Dong, Q. Meng, S. ur Rehman, J. Wang, Z. Ge, V. Y. Osipova, H. Bi, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2021.04.033.
- 22
- 22aJ. Zhou, Z. Liu, F. Li, Chem. Soc. Rev. 2012, 41, 1323–1349;
- 22bF. Wang, X. Liu, J. Am. Chem. Soc. 2008, 130, 5642–5643.
- 23J. Tan, Q. Li, S. Meng, Y. Li, J. Yang, Y. Ye, Z. Tang, S. Qu, X. Ren, Adv. Mater. 2021, 33, 2006781.
- 24
- 24aD. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, X. Chen, Angew. Chem. Int. Ed. 2011, 50, 6306–6310; Angew. Chem. 2011, 123, 6430–6434;
- 24bJ. Gu, J. Shen, L. Sun, C. Yan, J. Phys. Chem. C 2008, 112, 6589–6593.
- 25X. Wang, H. Ma, M. Gu, C. Lin, N. Gan, Z. Xie, H. Wang, L. Bian, L. Fu, S. Cai, Z. Chi, W. Yao, Z. An, H. Shi, W. Huang, Chem. Mater. 2019, 31, 5584–5591.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.