Key Features of Polyimide-Derived Carbon Molecular Sieves
Dr. Wulin Qiu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorDr. Johannes E. Leisen
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400 USA
Search for more papers by this authorDr. Zhongyun Liu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorDr. Wenying Quan
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. William J. Koros
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorDr. Wulin Qiu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorDr. Johannes E. Leisen
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400 USA
Search for more papers by this authorDr. Zhongyun Liu
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorDr. Wenying Quan
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. William J. Koros
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100 USA
Search for more papers by this authorAbstract
Carbon molecular sieve (CMS) membranes have impressive separation properties; however, both chemical and morphology structures need to be understood better. Here we characterize CMS with the simplest polyimide (PI) PMDA/pPDA (PMDA=pyromellitic dianhydride, pPDA=p-phenylenediamine), using FTIR, solid-state 15N-NMR and 13C-NMR, XPS, XRD, and Raman spectra to study chemical structure. We also compare gas separation properties for this CMS to a CMS derived from a more conventional PI precursor. The detailed characterization shows the presence of aromatic pyridinic, pyrrolic rings as well as graphitic, pyridonic components and a few other groups in both CMS types derived from the very different precursors. The CMS morphologies, while related to precursor and pyrolysis temperature details, show similarities consistent with a physical picture comprising distributed molecular sieving plate-like structures. These results assist in understanding diverse CMS membrane separation performance.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202106740-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Koresh, A. Soffer, J. Chem. Soc. Faraday Trans. 1 1980, 76, 2457–2471;
- 1bH. Hatori, Y. Yamada, M. Shiraishi, H. Nakata, S. Yoshitomi, Carbon 1992, 30, 305–306;
- 1cJ.-i. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka, S.-H. Suh, Ind. Eng. Chem. Res. 1996, 35, 4176–4181;
- 1dMembrane Formation and Modification: H. Suda, K. Haraya, ACS Symp. Ser. 2000, 744, 295–313;
- 1eA. F. Ismail, L. I. B. David, J. Membr. Sci. 2001, 193, 1–18;
- 1fS. M. Saufi, A. F. Ismail, Carbon 2004, 42, 241–259;
- 1gM. Inagaki, N. Ohta, Y. Hishiyama, Carbon 2013, 61, 1–21;
- 1hY. Ma, M. L. Jue, F. Y. Zhang, R. Mathias, H. Y. Jang, R. P. Lively, Angew. Chem. Int. Ed. 2019, 58, 13259–13265; Angew. Chem. 2019, 131, 13393–13399;
- 1iR. Swaidan, X. H. Ma, E. Litwiller, I. Pinnau, J. Membr. Sci. 2013, 447, 387–394.
- 2
- 2aD. Q. Vu, W. J. Koros, S. J. Miller, Ind. Eng. Chem. Res. 2002, 41, 367–380;
- 2bK. M. Steel, W. J. Koros, Carbon 2005, 43, 1843–1856;
- 2cT. A. Centeno, J. L. Vilas, A. B. Fuertes, J. Membr. Sci. 2004, 228, 45–54;
- 2dL. R. Xu, M. Rungta, M. K. Brayden, M. V. Martinez, B. A. Stears, G. A. Barbay, W. J. Koros, J. Membr. Sci. 2012, 423, 314–323;
- 2eW. L. Qiu, K. Zhang, F. S. Li, K. Zhang, W. J. Koros, ChemSusChem 2014, 7, 1186–1194;
- 2fW. J. Koros, C. Zhang, Nat. Mater. 2017, 16, 289–297;
- 2gR. J. Swaidan, X. H. Ma, I. Pinnau, J. Membr. Sci. 2016, 520, 983–989;
- 2hC. Zhang, W. J. Koros, Adv. Mater. 2017, 29, 1701631;
- 2iZ. G. Wang, H. T. Ren, S. X. Zhang, F. Zhang, J. Jin, ChemSusChem 2018, 11, 916–923;
- 2jW. L. Qiu, J. Vaughn, G. P. Liu, L. R. Xu, M. Brayden, M. Martinez, T. Fitzgibbons, G. Wenz, W. J. Koros, Angew. Chem. Int. Ed. 2019, 58, 11700–11703; Angew. Chem. 2019, 131, 11826–11829.
- 3
- 3aL. M. Robeson, J. Membr. Sci. 1991, 62, 165–185;
- 3bB. D. Freeman, Macromolecules 1999, 32, 375–380;
- 3cL. M. Robeson, J. Membr. Sci. 2008, 320, 390–400;
- 3dD. E. Sanders, Z. P. Smith, R. L. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, B. D. Freeman, Polymer 2013, 54, 4729–4761.
- 4M. Rungta, G. B. Wenz, C. Zhang, L. R. Xu, W. L. Qiu, J. S. Adams, W. J. Koros, Carbon 2017, 115, 237–248.
- 5O. Sanyal, S. S. Hays, N. E. León, Y. A. Guta, A. K. Itta, R. P. Lively, W. J. Koros, Angew. Chem. Int. Ed. 2020, 59, 20343–20347; Angew. Chem. 2020, 132, 20523–20527.
- 6S. S. Hays, O. Sanyal, N. E. Leon, P. Arab, W. J. Koros, Carbon 2020, 157, 385–394.
- 7
- 7aK. M. Steel, W. J. Koros, Carbon 2003, 41, 253–266;
- 7bH. O. Pierson, Hand Book of graphite, diamond, and fullerenes, Noyes, New Jersey, 1993.
- 8
- 8aM. J. Duer, Solid state NMR spectroscopy: principles and applications, Wiley, Hoboken, 2008;
- 8bD. C. Apperley, R. K. Harris, P. Hodgkinson, Solid-state NMR: Basic principles and practice, Momentum Press, New York, 2012.
10.5643/9781606503522 Google Scholar
- 9
- 9aS. Kuroki, Y. Hosaka, C. Yamauchi, Carbon 2013, 55, 160–167;
- 9bS. Kuroki, Y. Hosaka, C. Yamauchi, M. Sonoda, Y. Nabae, M.-a. Kakimoto, S. Miyata, J. Electrochem. Soc. 2012, 159, F309–F315.
- 10S. Kuroki, Y. Nabae, M. Chokai, M.-a. Kakimoto, S. Miyata, Carbon 2012, 50, 153–162.
- 11J. S. Adams, A. K. Itta, C. Zhang, G. B. Wenz, O. Sanyal, W. J. Koros, Carbon 2019, 141, 238–246.
- 12J. C. Freitas, F. G. Emmerich, G. R. Cernicchiaro, L. C. Sampaio, T. J. Bonagamba, Solid State Nucl. Magn. Reson. 2001, 20, 61–73.
- 13G. M. Jenkins, A. Jenkins, K. Kawamura, Polymeric carbons: carbon fibre, glass and char, Cambridge University Press, Cambridge, 1976.
- 14H. J. Seong, A. L. Boehman, Energy Fuels 2013, 27, 1613–1624.
- 15
- 15aP. Parent, C. Laffon, I. Marhaba, D. Ferry, T. Regier, I. Ortega, B. Chazallon, Y. Carpentier, C. Focsa, Carbon 2016, 101, 86–100;
- 15bH. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781–794;
- 15cA. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 2005, 43, 1731–1742;
- 15dA. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
- 16
- 16aS. Yumitori, J. Mater. Sci. 2000, 35, 139–146;
- 16bT. Takahagi, A. Ishitani, Carbon 1984, 22, 43–46;
- 16cA. Wollbrink, K. Volgmann, J. Koch, K. Kanthasamy, C. Tegenkamp, Y. Li, H. Richter, S. Kämnitz, F. Steinbach, A. Feldhoff, Carbon 2016, 106, 93–105;
- 16dA. Puziy, O. Poddubnaya, R. Socha, J. Gurgul, M. Wisniewski, Carbon 2008, 46, 2113–2123;
- 16eM. Kozłowski, Fuel 2004, 83, 259–265;
- 16fS. Biniak, G. Szymański, J. Siedlewski, A. Świątkowski, Carbon 1997, 35, 1799–1810;
- 16gS. Zhao, Z. q. Shi, C. y. Wang, M. m. Chen, J. Appl. Polym. Sci. 2008, 108, 1852–1856;
- 16hZ. Zafar, Z. H. Ni, X. Wu, Z. X. Shi, H. Y. Nan, J. Bai, L. T. Sun, Carbon 2013, 61, 57–62;
- 16iF. Yin, S. Wu, Y. Wang, L. Wu, P. Yuan, X. Wang, J. Solid State Chem. 2016, 237, 57–63;
- 16jJ. Rieß, M. Lublow, S. Anders, M. Tasbihi, A. Acharjya, K. Kailasam, A. Thomas, M. Schwarze, R. Schomäcker, Photochem. Photobiol. Sci. 2019, 18, 1833–1839.
- 17
- 17aR. Arrigo, M. Hävecker, R. Schlögl, D. S. Su, Chem. Commun. 2008, 4891–4893;
- 17bR. Pietrzak, Fuel 2009, 88, 1871–1877;
- 17cD. Sebastián, M. J. Nieto-Monge, S. Pérez-Rodríguez, E. Pastor, M. J. Lázaro, Energies 2018, 11, 831;
- 17dJ. Pels, F. Kapteijn, J. Moulijn, Q. Zhu, K. Thomas, Carbon 1995, 33, 1641–1653.
- 18
- 18aM. E. Schuster, M. Hävecker, R. Arrigo, R. Blume, M. Knauer, N. P. Ivleva, D. S. Su, R. Niessner, R. Schlögl, J. Phys. Chem. A 2011, 115, 2568–2580;
- 18bS. Zhang, X.-y. Li, J. P. Chen, J. Colloid Interface Sci. 2010, 343, 232–238.
- 19G. Ehlers, K. Fisch, W. Powell, J. Polym. Sci. Part A-1 Polym. Chem. 1970, 8, 3511–3527.
- 20W. Qiu, F. S. Li, S. Fu, W. J. Koros, ChemSusChem 2020, 13, 5318–5328.
- 21M. Kiyono, P. J. Williams, W. J. Koros, Carbon 2010, 48, 4432–4441.
- 22J. Seo, S. Y. Lee, W. Jang, H. Han, J. Appl. Polym. Sci. 2003, 89, 3442–3446.
- 23H. Lei, M. Zhang, H. Niu, S. Qi, G. Tian, D. Wu, Polymer 2018, 149, 96–105.
- 24L. Liu, W. Qiu, E. S. Sanders, C. Ma, W. J. Koros, J. Membr. Sci. 2016, 510, 447–454.