Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy**
Xiaochen Tan
Department of Chemistry, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorCorresponding Author
Dr. Kevin Welsher
Department of Chemistry, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorXiaochen Tan
Department of Chemistry, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorCorresponding Author
Dr. Kevin Welsher
Department of Chemistry, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.13521332.v1).
Abstract
Nanoparticles (NPs) adsorb proteins when exposed to biological fluids, forming a dynamic protein corona that affects their fate in biological environments. A comprehensive understanding of the protein corona is lacking due to the inability of current techniques to precisely measure the full corona in situ at the single-particle level. Herein, we introduce a 3D real-time single-particle tracking spectroscopy to “lock-on” to single freely diffusing polystyrene NPs and probe their individual protein coronas, primarily using bovine serum albumin (BSA) as a model system. The fluorescence signals and diffusive motions of the tracked NPs enable quantification of the “hard corona” using mean-squared displacement analysis. Critically, this method's particle-by-particle nature enabled a lock-in-type frequency filtering approach to extract the full protein corona, despite the typically confounding effect of high background signal from unbound proteins. From these results, the dynamic in situ full protein corona is observed to contain twice the number of proteins compared to the ex situ-measured “hard” protein corona.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202105741-sup-0001-misc_information.pdf10.4 MB | Supporting Information |
ange202105741-sup-0001-Movie_S1.mp41.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. M. Allen, P. R. Cullis, Science 2004, 303, 1818–1822.
- 2W. H. De Jong, P. J. A. Borm, Int. J. Nanomed. 2008, 3, 133–149.
- 3D. E. Lee, H. Koo, I. C. Sun, J. H. Ryu, K. Kim, I. C. Kwon, Chem. Soc. Rev. 2012, 41, 2656–2672.
- 4B. Pelaz, C. Alexiou, R. A. Alvarez-Puebla, F. Alves, A. M. Andrews, S. Ashraf, L. P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, S. Bosi, M. Carril, W. C. W. Chan, C. Chen, X. Chen, X. Chen, Z. Cheng, D. Cui, J. Du, C. Dullin, A. Escudero, N. Feliu, M. Gao, M. George, Y. Gogotsi, A. Grünweller, Z. Gu, N. J. Halas, N. Hampp, R. K. Hartmann, M. C. Hersam, P. Hunziker, J. Jian, X. Jiang, P. Jungebluth, P. Kadhiresan, K. Kataoka, A. Khademhosseini, J. Kopeček, N. A. Kotov, H. F. Krug, D. S. Lee, C. M. Lehr, K. W. Leong, X. J. Liang, M. L. Lim, L. M. Liz-Marzán, X. Ma, P. Macchiarini, H. Meng, H. Möhwald, P. Mulvaney, A. E. Nel, S. Nie, P. Nordlander, T. Okano, J. Oliveira, T. H. Park, R. M. Penner, M. Prato, V. Puntes, V. M. Rotello, A. Samarakoon, R. E. Schaak, Y. Shen, S. Sjöqvist, A. G. Skirtach, M. G. Soliman, M. M. Stevens, H. W. Sung, B. Z. Tang, R. Tietze, B. N. Udugama, J. Scott VanEpps, T. Weil, P. S. Weiss, I. Willner, Y. Wu, L. Yang, Z. Yue, Q. Zhang, Q. Zhang, X. E. Zhang, Y. Zhao, X. Zhou, W. J. Parak, ACS Nano 2017, 11, 2313–2381.
- 5T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.
- 6T. Cedervall, I. Lynch, M. Foy, T. Berggård, S. C. Donnelly, G. Cagney, S. Linse, K. A. Dawson, Angew. Chem. Int. Ed. 2007, 46, 5754–5756; Angew. Chem. 2007, 119, 5856–5858.
- 7C. Röcker, M. Pötzl, F. Zhang, W. J. Parak, G. U. Nienhaus, Nat. Nanotechnol. 2009, 4, 577–580.
- 8L. Shang, G. U. Nienhaus, Acc. Chem. Res. 2017, 50, 387–395.
- 9S. Dominguez-Medina, L. Kisley, L. J. Tauzin, A. Hoggard, B. Shuang, A. S. D. S. Indrasekara, S. Chen, L. Y. Wang, P. J. Derry, A. Liopo, E. R. Zubarev, C. F. Landes, S. Link, ACS Nano 2016, 10, 2103–2112.
- 10H. Wang, R. Ma, K. Nienhaus, G. U. Nienhaus, Small 2019, 15, 1900974.
- 11R. Cukalevski, S. A. Ferreira, C. J. Dunning, T. Berggård, T. Cedervall, Nano Res. 2015, 8, 2733—2743.
- 12S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S. K. Knauer, R. H. Stauber, Nat. Nanotechnol. 2013, 8, 772–781.
- 13G. Baier, C. Costa, A. Zeller, D. Baumann, C. Sayer, P. H. H. Araujo, V. Mailänder, A. Musyanovych, K. Landfester, Macromol. Biosci. 2011, 11, 628–638.
- 14V. P. Vu, G. B. Gifford, F. Chen, H. Benasutti, G. Wang, E. V. Groman, R. Scheinman, L. Saba, S. M. Moghimi, D. Simberg, Nat. Nanotechnol. 2019, 14, 260–268.
- 15E. L. L. Yeo, P. S. P. Thong, K. C. Soo, J. C. Y. Kah, Nanoscale 2018, 10, 2461–2472.
- 16C. C. Fleischer, C. K. Payne, Acc. Chem. Res. 2014, 47, 2651–2659.
- 17C. C. Fleischer, C. K. Payne, J. Phys. Chem. B 2014, 118, 14017–14026.
- 18S. Lara, F. Alnasser, E. Polo, D. Garry, M. C. Lo Giudice, D. R. Hristov, L. Rocks, A. Salvati, Y. Yan, K. A. Dawson, ACS Nano 2017, 11, 1884–1893.
- 19Z. J. Deng, M. Liang, M. Monteiro, I. Toth, R. F. Minchin, Nat. Nanotechnol. 2011, 6, 39–44.
- 20J. Mosquera, I. Garciá, M. Henriksen-Lacey, M. Martínez-Calvo, M. Dhanjani, J. L. Mascarenãs, L. M. Liz-Marzán, ACS Nano 2020, 14, 5382—5391; Correction: J. Mosquera, I. Garciá, M. Henriksen-Lacey, M. Martínez-Calvo, M. Dhanjani, J. L. Mascarenãs, L. M. Liz-Marzán, ACS Nano 2020, 14, 10745—10746.
- 21J. Y. Oh, H. S. Kim, L. Palanikumar, E. M. Go, B. Jana, S. A. Park, H. Y. Kim, K. Kim, J. K. Seo, S. K. Kwak, C. Kim, S. Kang, J. H. Ryu, Nat. Commun. 2018, 9, 4548.
- 22M. Hadjidemetriou, K. Kostarelos, Nat. Nanotechnol. 2017, 12, 288–290.
- 23M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K. A. Dawson, Proc. Natl. Acad. Sci. USA 2008, 105, 14265–70.
- 24G. Maiorano, S. Sabella, B. Sorce, V. Brunetti, M. A. Malvindi, R. Cingolani, P. P. Pompa, ACS Nano 2010, 4, 7481–7491.
- 25L. Treuel, S. Brandholt, P. Maffre, S. Wiegele, L. Shang, G. U. Nienhaus, ACS Nano 2014, 8, 503–513.
- 26F. Pederzoli, G. Tosi, M. A. Vandelli, D. Belletti, F. Forni, B. Ruozi, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1467.
- 27C. Weber, S. Morsbach, K. Landfester, Angew. Chem. Int. Ed. 2019, 58, 12787–12794; Angew. Chem. 2019, 131, 12918–12925.
- 28H. Wang, Y. Lin, K. Nienhaus, G. U. Nienhaus, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, —e1500.
- 29H. Zhang, J. Peng, X. Li, S. Liu, Z. Hu, G. Xu, R. Wu, Colloids Surf. B 2018, 167, 220–228.
- 30R. L. Pinals, D. Yang, D. J. Rosenberg, T. Chaudhary, A. R. Crothers, A. T. Iavarone, M. Hammel, M. P. Landry, Angew. Chem. Int. Ed. 2020, 59, 23668–23677; Angew. Chem. 2020, 132, 23876–23885.
- 31R. L. Pinals, D. Yang, A. Lui, W. Cao, M. P. Landry, J. Am. Chem. Soc. 2020, 142, 1254–1264.
- 32S. Qu, F. Sun, Z. Qiao, J. Li, L. Shang, Small 2020, 16, 1907633.
- 33S. Milani, F. Baldelli Bombelli, A. S. Pitek, K. A. Dawson, J. Rädler, ACS Nano 2012, 6, 2532–2541.
- 34M. P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch, F. Baldelli Bombelli, K. A. Dawson, J. Am. Chem. Soc. 2011, 133, 2525–2534.
- 35Y. Zhang, J. L. Y. Wu, J. Lazarovits, W. C. W. Chan, J. Am. Chem. Soc. 2020, 142, 8827–8836.
- 36K. Welsher, S. A. McManus, C. H. Hsia, S. Yin, H. Yang, J. Am. Chem. Soc. 2015, 137, 580–583.
- 37D. F. Moyano, K. Saha, G. Prakash, B. Yan, H. Kong, M. Yazdani, V. M. Rotello, ACS Nano 2014, 8, 6748–6755.
- 38P. M. Kelly, C. Åberg, E. Polo, A. O'Connell, J. Cookman, J. Fallon, Ž. Krpetić, K. A. Dawson, Nat. Nanotechnol. 2015, 10, 472–479.
- 39N. Feiner-Gracia, M. Beck, S. Pujals, S. Tosi, T. Mandal, C. Buske, M. Linden, L. Albertazzi, Small 2017, 13, 1701631.
- 40A. M. Clemments, P. Botella, C. C. Landry, J. Am. Chem. Soc. 2017, 139, 3978–3981.
- 41A. C. G. Weiss, K. Krüger, Q. A. Besford, M. Schlenk, K. Kempe, S. Förster, F. Caruso, ACS Appl. Mater. Interfaces 2019, 11, 2459–2469.
- 42I. Ament, J. Prasad, A. Henkel, S. Schmachtel, C. Sönnichsen, Nano Lett. 2012, 12, 1092–1095.
- 43K. Welsher, H. Yang, Nat. Nanotechnol. 2014, 9, 198–203.
- 44H. Shen, L. J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, C. F. Landes, Chem. Rev. 2017, 117, 7331–7376.
- 45S. Hou, C. Johnson, K. Welsher, Molecules 2019, 24, 2826.
- 46S. Hou, X. Lang, K. Welsher, Opt. Lett. 2017, 42, 2390.
- 47S. Hou, J. Exell, K. Welsher, Nat. Commun. 2020, 11, 3607.
- 48S. Hou, K. Welsher, Small 2019, 15, 1903039.
- 49X. M. He, D. C. Carter, Nature 1992, 358, 209–215.
- 50S. Yu, A. Perálvarez-Marín, C. Minelli, J. Faraudo, A. Roig, A. Laromaine, Nanoscale 2016, 8, 14393–14405.
- 51M. Kokkinopoulou, J. Simon, K. Landfester, V. Mailänder, I. Lieberwirth, Nanoscale 2017, 9, 8858–8870.
- 52L. Vroman, A. L. Adams, G. C. Fischer, P. C. Munoz, Blood 1980, 55, 156–159.
- 53V. P. Zhdanov, Curr. Opin. Colloid Interface Sci. 2019, 41, 95–103.
- 54L. K. Müller, J. Simon, C. Rosenauer, V. Mailänder, S. Morsbach, K. Landfester, Biomacromolecules 2018, 19, 374–385.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.