Two-Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pH-Universal Hydrogen Evolution Reaction
Dr. Ying Gu
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorDr. Aiping Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorDr. Yanqing Jiao
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorHuiru Zheng
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorXueqi Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorProf. Ying Xie
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorProf. Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Chungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Honggang Fu
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorDr. Ying Gu
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Search for more papers by this authorDr. Aiping Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorDr. Yanqing Jiao
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorHuiru Zheng
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorXueqi Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorProf. Ying Xie
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorProf. Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Chungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Prof. Honggang Fu
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 P. R. China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080 China
Search for more papers by this authorAbstract
Herein, we present a new strategy for the synthesis of 2D porous MoP/Mo2N heterojunction nanosheets based on the pyrolysis of 2D [PMo12O40]3−-melamine (PMo12-MA) nanosheet precursor from a polyethylene glycol (PEG)-mediated assembly route. The heterostructure nanosheets are ca. 20 nm thick and have plentiful pores (<5 nm). These structure features offer advantages to promote the HER activity, including the favorable water dissociation kinetics around heterojunction as confirmed by theoretical calculations, large accessible surface of 2D nanosheets, and enhanced mass-transport ability by pores. Consequently, the 2D porous MoP/Mo2N heterojunction nanosheets exhibit excellent HER activity with low overpotentials of 89, 91 and 89 mV to achieve a current density of 10 mA cm−2 in alkaline, neutral and acidic electrolytes, respectively. The HER performance is superior to the commercial Pt/C at a current density >55 mA cm−2 in neutral medium and >190 mA cm−2 in alkaline medium.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202016102-sup-0001-misc_information.pdf3.1 MB | Supplementary |
ange202016102-sup-0001-Video-S1.mp44.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev. 2020, 49, 9154–9196.
- 2Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 3J. Zhu, L. Hu, P. Zhao, L. Y. S. Lee, K. Y. Wong, Chem. Rev. 2020, 120, 851–918.
- 4J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, Adv. Mater. 2020, 32, 1905679.
- 5Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529–1541.
- 6A. Wu, Y. Xie, H. Ma, C. Tian, Y. Gu, H. Yan, X. Zhang, G. Yang, H. Fu, Nano Energy 2018, 44, 353–363.
- 7Y. Li, X. Wei, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202009854; Angew. Chem. 2020, https://doi.org/10.1002/ange.202009854.
- 8H. Yan, Y. Xie, A. Wu, Z. Cai, L. Wang, C. Tian, X. Zhang, H. Fu, Adv. Mater. 2019, 31, 1901174.
- 9Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, S. Z. Qiao, Angew. Chem. Int. Ed. 2019, 58, 12252–12257; Angew. Chem. 2019, 131, 12380–12385.
- 10J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430–433.
- 11H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326.
- 12B. M. Tackett, W. Sheng, J. G. Chen, Joule 2017, 1, 253–263.
- 13A. Wu, Y. Gu, Y. Xie, C. Tian, H. Yan, D. Wang, X. Zhang, Z. Cai, H. Fu, ACS Appl. Mater. Interfaces 2019, 11, 25986–25995.
- 14X. Zhang, X. Yu, L. Zhang, F. Zhou, Y. Liang, R. Wang, Adv. Funct. Mater. 2018, 28, 1706523.
- 15H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694.
- 16X. Xiao, H. Yu, H. Jin, M. Wu, Y. Fang, J. Sun, Z. Hu, T. Li, J. Wu, L. Huang, Y. Gogotsi, ACS Nano 2017, 11, 2180–2186.
- 17J. Zhang, Q. Zhang, X. Feng, Adv. Mater. 2019, 31, 1808167.
- 18A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang, H. Fu, Nanoscale 2016, 8, 11052–11059.
- 19C. Chen, A. Wu, H. Yan, Y. Xiao, C. Tian, H. Fu, Chem. Sci. 2018, 9, 4746–4755.
- 20Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li, G. Li, Small 2020, 16, 2002482.
- 21L. He, W. Zhang, Q. Mo, W. Huang, L. Yang, Q. Gao, Angew. Chem. Int. Ed. 2020, 59, 3544–3548; Angew. Chem. 2020, 132, 3572–3576.
- 22H. J. Yan, C. G. Tian, L. Wang, A. P. Wu, M. C. Meng, L. Zhao, H. G. Fu, Angew. Chem. Int. Ed. 2015, 54, 6325–6329; Angew. Chem. 2015, 127, 6423–6427.
- 23L. N. Zhang, S. H. Li, H. Q. Tan, S. U. Khan, Y. Y. Ma, H. Y. Zang, Y. H. Wang, Y. G. Li, ACS Appl. Mater. Interfaces 2017, 9, 16270–16279.
- 24J. Joo, T. Kim, J. Lee, S. I. Choi, K. Lee, Adv. Mater. 2019, 31, 1806682.
- 25Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 2019, 31, 1802880.
- 26H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem. Rev. 2018, 118, 6337–6408.
- 27H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu, H. Zhao, Adv. Mater. 2020, 32, 1904870.
- 28K. S. Novoselov, O. A. Mishchenko, O. A. Carvalho, A. C. Neto, Science 2016, 353, aac9439.
- 29J. Xiong, J. Li, J. Shi, X. Zhang, N. T. Suen, Z. Liu, Y. Huang, G. Xu, W. Cai, X. Lei, L. Feng, ACS Energy Lett. 2018, 3, 341–348.
- 30H. Jin, Q. Gu, B. Chen, C. Tang, Y. Zheng, H. Zhang, M. Jaroniec, S. Z. Qiao, Chem 2020, 6, 2382–2394.
- 31F. Li, G. F. Han, H. J. Noh, Y. Lu, J. Xu, Y. Bu, Z. Fu, J. B. Baek, Angew. Chem. Int. Ed. 2018, 57, 14139–14143; Angew. Chem. 2018, 130, 14335–14339.
- 32J. Wang, Z. Chang, B. Ding, T. Li, G. Yang, Z. Pang, T. Nakato, M. Eguchi, Y. M. Kang, J. Na, B. Y. Guan, Angew. Chem. Int. Ed. 2020, 59, 19570–19575; Angew. Chem. 2020, 132, 19738–19743.
- 33X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G. I. Waterhouse, T. Zhang, Adv. Energy Mater. 2019, 9, 1900881.
- 34H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu, Adv. Mater. 2018, 30, 1704156.
- 35Z. Kou, T. Wang, Q. Gu, M. Xiong, L. Zheng, X. Li, Z. Pan, H. Chen, F. Verpoort, A. K. Cheetham, S. Mu, Adv. Energy Mater. 2019, 9, 1803768.
- 36Z. Xing, Q. Liu, A. M. Asiri, X. Sun, Adv. Mater. 2014, 26, 5702–5707.
- 37J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 12854–12858; Angew. Chem. 2016, 128, 13046–13050.
- 38Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li, N. Yang, B. Chen, H. Zhang, Chem. Rev. 2018, 118, 6409–6455.
- 39X. Cai, Y. Luo, B. Liu, H. M. Cheng, Chem. Soc. Rev. 2018, 47, 6224–6266.
- 40H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1804883.
- 41X. B. Han, X. Y. Tang, Y. Lin, E. Gracia-Espino, S. G. Liu, H. W. Liang, G. Z. Hu, X. J. Zhao, H. G. Liao, Y. Z. Tan, T. Wagberg, J. Am. Chem. Soc. 2019, 141, 232–239.
- 42S. Jing, L. Zhang, L. Luo, J. Lu, S. Yin, P. K. Shen, P. Tsiakaras, Appl. Catal. B 2018, 224, 533–540.
- 43M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin, J. S. Lee, Adv. Mater. 2018, 30, 1707105.
- 44J. T. Ren, L. Chen, D. D. Yang, Z. Y. Yuan, Appl. Catal. B 2020, 263, 118352.
- 45M. Nazarian-Samani, S. Haghighat-Shishavan, M. Nazarian-Samani, S. F. Kashani-Bozorg, S. Ramakrishna, K. B. Kim, Prog. Mater. Sci. 2021, 116, 100716.
- 46Y. Xiao, G. Tian, W. Li, Y. Xie, B. Jiang, C. Tian, D. Zhao, H. Fu, J. Am. Chem. Soc. 2019, 141, 2508–2515.
- 47X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, J. Am. Chem. Soc. 2006, 128, 7222–7229.
- 48W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116, 7159–7329.
- 49H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002435.
- 50G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291.
- 51Y. Jiao, H. Yan, R. Wang, X. Wang, X. Zhang, A. Wu, C. Tian, B. Jiang, H. Fu, ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.
- 52C. Huang, C. Pi, X. Zhang, K. Ding, P. Qin, J. Fu, X. Peng, B. Gao, P. K. Chu, K. Huo, Small 2018, 14, 1800667.
- 53D. Wang, X. Kang, Y. Gu, H. Zhang, J. Liu, A. Wu, H. Yan, C. Tian, H. Fu, ACS Catal. 2020, 10, 10449–10458.
- 54A. Wu, Y. Gu, B. Yang, H. Wu, H. Yan, Y. Jiao, D. Wang, C. Tian, H. Fu, J. Mater. Chem. A 2020, 8, 22938–22946.
- 55B. Liu, H. Li, B. Cao, J. Jiang, R. Gao, J. Zhang, Adv. Funct. Mater. 2018, 28, 1801527.
- 56F. Lin, Z. Dong, Y. Yao, L. Yang, F. Fang, L. Jiao, Adv. Energy Mater. 2020, 10, 2002176.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.