A Highly Ordered Quantum Dot Supramolecular Assembly Exhibiting Photoinduced Emission Enhancement
Corresponding Author
Dr. Mitsuaki Yamauchi
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorSeiya Yamamoto
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Sadahiro Masuo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorCorresponding Author
Dr. Mitsuaki Yamauchi
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorSeiya Yamamoto
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Sadahiro Masuo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
Search for more papers by this authorAbstract
Multicomponent supramolecular assembly systems enable the generation of materials with outstanding properties, not obtained from single-component systems, via a synergetic effect. Herein, we demonstrate a novel supramolecular coassembly system rendering highly ordered quantum dot (QD) arrangement structures formed via the self-assembly of azobenzene derivatives, where the photocontrollable photoluminescence (PL) properties of the QDs are realized based on photoisomerization. Upon mixing the assembled azobenzene derivatives and QDs in apolar media, a time-evolution coaggregation into hierarchical nanosheets with a highly ordered QD arrangement structure occurs. Upon photoirradiation, the nanosheets transform into ill-defined aggregates without arranged QDs together with enhancing the PL intensity. In days, the photoirradiated coaggregates undergo recovery of the PL properties corresponding to the arranged QDs through thermal isomerization.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202015535-sup-0001-misc_information.pdf7.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Wu, M. Fuxreiter, Cell 2016, 165, 1055–1066.
- 2D. M. Raymond, B. L. Nilsson, Chem. Soc. Rev. 2018, 47, 3659–3720.
- 3S. P. W. Wijnands, E. W. Meijer, M. Merkx, Bioconjugate Chem. 2019, 30, 1905–1914.
- 4A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831–4835.
- 5M. M. Safont-Sempere, G. Fernandez, F. Wurthner, Chem. Rev. 2011, 111, 5784–5814.
- 6M. J. Mayoral, C. Rest, J. Schellheimer, V. Stepanenko, G. Fernandez, Chem. Eur. J. 2012, 18, 15607–15611.
- 7D. Gorl, X. Zhang, V. Stepanenko, F. Wurthner, Nat. Commun. 2015, 6, 7009.
- 8Y. S. Wang, T. Feng, Y. Y. Wang, F. E. Hahn, Y. F. Han, Angew. Chem. Int. Ed. 2018, 57, 15767–15771; Angew. Chem. 2018, 130, 15993–15997.
- 9K. Aratsu, R. Takeya, B. R. Pauw, M. J. Hollamby, Y. Kitamoto, N. Shimizu, H. Takagi, R. Haruki, S. I. Adachi, S. Yagai, Nat. Commun. 2020, 11, 1623.
- 10A. Sarkar, T. Behera, R. Sasmal, R. Capelli, C. Empereur-Mot, J. Mahato, S. S. Agasti, G. M. Pavan, A. Chowdhury, S. J. George, J. Am. Chem. Soc. 2020, 142, 11528–11539.
- 11A. P. Alivisatos, Science 1996, 271, 933–937.
- 12
- 12aD. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110, 389–458;
- 12bW. R. Algar, K. Susumu, J. B. Delehanty, I. L. Medintz, Anal. Chem. 2011, 83, 8826–8837.
- 13M. K. Choi, J. Yang, T. Hyeon, D.-H. Kim, npj Flexible Electron. 2018, 2, 10.
- 14L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 15F. Purcell-Milton, A. K. Visheratina, V. A. Kuznetsova, A. Ryan, A. O. Orlova, Y. K. Gun′ko, ACS Nano 2017, 11, 9207–9214.
- 16B. Fisher, J. M. Caruge, D. Zehnder, M. Bawendi, Phys. Rev. Lett. 2005, 94, 087403.
- 17B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, B. Dubertret, Nat. Mater. 2008, 7, 659–664.
- 18H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, S. Masuo, Nano Lett. 2016, 16, 5770–5778.
- 19H. Yoshimura, M. Yamauchi, S. Masuo, J. Phys. Chem. Lett. 2020, 11, 530–535.
- 20C. Giansante, L. Carbone, C. Giannini, D. Altamura, Z. Ameer, G. Maruccio, A. Loiudice, M. R. Belviso, P. D. Cozzoli, A. Rizzo, G. Gigli, J. Phys. Chem. C 2013, 117, 13305–13317.
- 21N. Kholmicheva, N. Razgoniaeva, P. Yadav, A. Lahey, C. Erickson, P. Moroz, D. Gamelin, M. Zamkov, J. Phys. Chem. C 2017, 121, 1477–1487.
- 22M. Matsubara, W. Stevenson, J. Yabuki, X. Zeng, H. Dong, K. Kojima, S. F. Chichibu, K. Tamada, A. Muramatsu, G. Ungar, K. Kanie, Chem 2017, 2, 860–876.
- 23C. Zhou, Y. Zhong, H. Dong, W. Zheng, J. Tan, Q. Jie, A. Pan, L. Zhang, W. Xie, Nat. Commun. 2020, 11, 329.
- 24M. Yamauchi, S. Masuo, Chem. Eur. J. 2020, 26, 7176–7184.
- 25M. Yamauchi, S. Masuo, Chem. Eur. J. 2019, 25, 167–172.
- 26T. Fujino, S. Y. Arzhantsev, T. Tahara, J. Phys. Chem. A 2001, 105, 8123–8129.
- 27H. M. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809–1825.
- 28J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, M. Califano, J. Phys. Chem. C 2009, 113, 19468–19474.
- 29L. Zang, Y. Che, J. S. Moore, Acc. Chem. Res. 2008, 41, 1596–1608.
- 30P. A. Korevaar, C. Schaefer, T. F. de Greef, E. W. Meijer, J. Am. Chem. Soc. 2012, 134, 13482–13491.
- 31C. Kulkarni, K. K. Bejagam, S. P. Senanayak, K. S. Narayan, S. Balasubramanian, S. J. George, J. Am. Chem. Soc. 2015, 137, 3924–3932.
- 32T. Ren, P. K. Mandal, W. Erker, Z. Liu, Y. Avlasevich, L. Puhl, K. Mullen, T. Basche, J. Am. Chem. Soc. 2008, 130, 17242–17243.
- 33E. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman, H. Mattoussi, J. Am. Chem. Soc. 2005, 127, 6744–6751.
- 34N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov, ACS Energy Lett. 2017, 2, 154–160.
- 35K. Tvrdy, P. A. Frantsuzov, P. V. Kamat, Proc. Natl. Acad. Sci. USA 2011, 108, 29–34.
- 36J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006, chap XXVI, p. 954.
- 37L. Zhu, M. Q. Zhu, J. K. Hurst, A. D. Li, J. Am. Chem. Soc. 2005, 127, 8968–8970.
- 38J. B. Hoffman, H. Choi, P. V. Kamat, J. Phys. Chem. C 2014, 118, 18453–18461.
- 39K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, I. L. Medintz, J. Am. Chem. Soc. 2010, 132, 18177–18190.
- 40S. Yagai, T. Karatsu, A. Kitamura, Chem. Eur. J. 2005, 11, 4054–4063.
- 41N. Hosono, T. Kajitani, T. Fukushima, K. Ito, S. Sasaki, M. Takata, T. Aida, Science 2010, 330, 808–811.
- 42A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, A. Ajayaghosh, Angew. Chem. Int. Ed. 2012, 51, 10505–10509; Angew. Chem. 2012, 124, 10657–10661.
- 43S. Yagai, M. Yamauchi, A. Kobayashi, T. Karatsu, A. Kitamura, T. Ohba, Y. Kikkawa, J. Am. Chem. Soc. 2012, 134, 18205–18208.
- 44B. Adhikari, Y. Yamada, M. Yamauchi, K. Wakita, X. Lin, K. Aratsu, T. Ohba, T. Karatsu, M. J. Hollamby, N. Shimizu, H. Takagi, R. Haruki, S. I. Adachi, S. Yagai, Nat. Commun. 2017, 8, 15254.
- 45M. R. Molla, P. Rangadurai, L. Antony, S. Swaminathan, J. J. de Pablo, S. Thayumanavan, Nat. Chem. 2018, 10, 659–666.
- 46
- 46aM. Yamauchi, K. Yokoyama, N. Aratani, H. Yamada, S. Masuo, Angew. Chem. Int. Ed. 2019, 58, 14173–14178; Angew. Chem. 2019, 131, 14311–14316;
- 46bK. Yano, Y. Itoh, F. Araoka, G. Watanabe, T. Hikima, T. Aida, Science 2019, 363, 161–165.
- 47M. Hada, D. Yamaguchi, T. Ishikawa, T. Sawa, K. Tsuruta, K. Ishikawa, S. Y. Koshihara, Y. Hayashi, T. Kato, Nat. Commun. 2019, 10, 4159.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.