Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite
Shanshan Liu
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xue Han
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuchao Chai
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Guangjun Wu
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorWeiyao Li
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorDr. Jiangnan Li
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorDr. Ivan da Silva
ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX UK
Search for more papers by this authorDr. Pascal Manuel
ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX UK
Search for more papers by this authorDr. Yongqiang Cheng
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. Luke L. Daemen
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. Anibal J. Ramirez-Cuesta
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorProf. Wei Shi
College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Naijia Guan
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Sihai Yang
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorCorresponding Author
Prof. Landong Li
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorShanshan Liu
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xue Han
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
These authors contributed equally to this work.
Search for more papers by this authorDr. Yuchao Chai
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorProf. Guangjun Wu
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorWeiyao Li
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorDr. Jiangnan Li
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorDr. Ivan da Silva
ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX UK
Search for more papers by this authorDr. Pascal Manuel
ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX UK
Search for more papers by this authorDr. Yongqiang Cheng
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. Luke L. Daemen
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorDr. Anibal J. Ramirez-Cuesta
Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorProf. Wei Shi
College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Naijia Guan
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Sihai Yang
Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
Search for more papers by this authorCorresponding Author
Prof. Landong Li
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorDedicated to the 100th anniversary of Chemistry at Nankai University
Abstract
The almost identical molecular sizes and volatilities of acetylene and carbon dioxide make their separation extremely challenging in industry. Reported here is the efficient separation of acetylene and carbon dioxide (v/v=2/1, which is relevant to that in the industrial cracking stream) in faujasite zeolites decorated with atomically-dispersed copper(II) sites under ambient conditions. In situ neutron powder diffraction and inelastic neutron scattering confirm that the confined copper(II) site displays chemoselective yet reversible binding to acetylene, whereas adsorbed carbon dioxide molecules are stabilized by weak host–guest supramolecular interactions with the framework oxygen centers, thus resulting in the efficient separation of these two gases under flow conditions. A designed adsorption-purging-desorption system based upon Cu@FAU is established for the recovery of high purity acetylene (98–99 %) from the mixture of acetylene and carbon dioxide, offering an unprecedented separation factor of 22.2 with an effective dynamic uptake of acetylene of 1.51 mmol g−1 at 298 K.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202014680-sup-0001-misc_information.pdf2.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Pässler, W. Hefner, K. Buckl, H. Meinass, A. Meiswinkel, H. J. Wernicke, G. Ebersberg, R. Müller, J. Bässler, H. Behringer, Acetylene, Wiley-VCH, Weinheim, 2000.
10.1002/14356007.a01_097 Google Scholar
- 2R. B. Lin, L. Li, H. Wu, H. Arman, B. Li, R. G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028.
- 3C. R. Reid, K. M. Thomas, J. Phys. Chem. B 2001, 105, 10619–10629.
- 4J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 5J. Li, L. Jiang, S. Chen, A. Kirchon, B. Li, Y. Li, H. C. Zhou, J. Am. Chem. Soc. 2019, 141, 3807–3811.
- 6Z. Zhang, S. B. Peh, Y. Wang, C. Kang, W. Fan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 18927–18932; Angew. Chem. 2020, 132, 19089–190941.
- 7Y. Wang, S. B. Peh, D. Zhao, Small 2019, 15, 1900058.
- 8C. R. Reid, K. M. Thomas, Langmuir 1999, 15, 3206–3218.
- 9B. L. Newalkar, N. V. Choudary, U. T. Turaga, R. P. Vijayalakshmi, P. Kumar, S. Komarneni, T. S. G. Bhat, Microporous Mesoporous Mater. 2003, 65, 267–276.
- 10Y. Ye, Z. Ma, R. B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136.
- 11J. P. Zhang, X. M. Chen, J. Am. Chem. Soc. 2009, 131, 5516–5521.
- 12F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T. L. Hu, M. O'Keeffe, L. Wang, M. Luo, R. B. Lin, B. Chen, J. Am. Chem. Soc. 2016, 138, 5678–5684.
- 13M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030.
- 14Y. L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K. J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141.
- 15K. J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry, M. J. Zaworotko, Chem 2016, 1, 753–765.
- 16R. Eguchi, S. Uchida, N. Mizuno, Angew. Chem. Int. Ed. 2012, 51, 1635–1639; Angew. Chem. 2012, 124, 1667–1671.
- 17P. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Zhou, M. O'Keeffe, Y. Han, B. Chen, Angew. Chem. Int. Ed. 2015, 54, 574–577; Angew. Chem. 2015, 127, 584–587.
- 18J. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 7869–7873; Angew. Chem. 2018, 130, 7995–7999.
- 19Y. Li, Y. Wang, Y. Xue, H. Li, Q. Zhai, S. Li, Y. Jiang, M. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729.
- 20H. Wang, X. Dong, V. Colombo, Q. Wang, Y. Liu, W. Liu, X. L. Wang, X. Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088.
- 21X. Wang, Z. Niu, A. M. Al-Enizi, A. Nafady, Y. Wu, B. Aguila, G. Verma, L. Wojtas, Y. S. Chen, Z. Li, S. Ma, J. Mater. Chem. A 2019, 7, 13585.
- 22H. Wang, Y. Liu, J. Li, Adv. Mater. 2020, 32, 2002603.
- 23Z. Niu, X. Cui, T. Pham, P. C. Lan, H. Xing, K. A. Forrest, L. Wojtas, B. Space, S. Ma, Angew. Chem. Int. Ed. 2019, 58, 10138–10141; Angew. Chem. 2019, 131, 10244–10247.
- 24W. Xu, B. Tu, Q. Liu, Y. Shu, C. C. Liang, C. S. Diercks, O. M. Yaghi, Y. B. Zhang, H. Deng, Q. Li, Nat. Rev. Mater. 2020, 5, 764–779.
- 25R. T. Yang, Gas Separation by Adsorption Processes, Butterworth, Stoneham, 1987.
- 26P. J. Bereciartua, Á. Cantín, A. Corma, J. L. Jordá, M. Palomino, F. Rey, S. Valencia, E. W. Corcoran, P. Kortunov, P. I. Ravikovitch, A. Burton, C. Yoon, Y. Wang, C. Paur, J. Guzman, A. R. Bishop, G. L. Casty, Science 2017, 358, 1068–1071.
- 27D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, T. L. Thomas, J. Am. Chem. Soc. 1956, 78, 5963–5972.
- 28Y. Chai, X. Han, W. Li, S. Liu, S. Yao, C. Wang, W. Shi, I. Da-Silva, P. Manuel, Y. Cheng, L. D. Daemen, A. J. Ramirez-Cuesta, C. C. Tang, L. Jiang, S. Yang, N. Guan, L. Li, Science 2020, 368, 1002–1006.
- 29M. Choi, Z. Wu, E. Iglesia, J. Am. Chem. Soc. 2010, 132, 9129–9137.
- 30A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121–127.
- 31A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140.
- 32P. M. Bhatt, Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L. J. Barbour, M. Eddaoudi, J. Am. Chem. Soc. 2016, 138, 9301–9307.
- 33R. A. Schoonheydt, Catal. Rev. 1993, 35, 129–168.
- 34A. Delabie, K. Pierloot, M. H. Groothaert, R. A. Schoonheydt, L. G. Vanquickenborne, Eur. J. Inorg. Chem. 2002, 515–530.
- 35J. H. Nelson, H. B. Jonassen, Coord. Chem. Rev. 1971, 6, 27–63.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.