2,4,6-Triphenylpyridinium: A Bulky, Highly Electron-Withdrawing Substituent That Enhances Properties of Nickel(II) Ethylene Polymerization Catalysts
Dr. Mateusz Janeta
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorJulius X. Heidlas
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Olafs Daugulis
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Maurice Brookhart
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorDr. Mateusz Janeta
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
Search for more papers by this authorJulius X. Heidlas
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Olafs Daugulis
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Maurice Brookhart
Department of Chemistry, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorAbstract
The reactivity of NiII and PdII olefin polymerization catalysts can be enhanced by introduction of electron-withdrawing substituents on the supporting ligands rendering the metal centers more electrophilic. Reported here is a comparison of ethylene polymerization activity of a classical salicyliminato nickel catalyst substituted with the powerful electron-withdrawing 2,4,6-triphenylpyridinium (trippy) group to the -CF3 analogue. The trippy substituent is substantially more electron-withdrawing (σmeta=0.63) than the trifluoromethyl group (σmeta=0.43) which results in a ca. 8-fold increase in catalytic turnover frequency. An additional advantage of trippy is the high steric bulk relative to the trifluoromethyl group. This feature results in a four-fold increase in polymer molecular weight owing to enhanced retardation of chain transfer. A significant increase in catalyst lifetime is observed as well.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013854-sup-0001-misc_information.pdf3.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc. 1995, 117, 6414–6415.
- 2S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169–1204.
- 3D. N. Vaccarello, K. S. O'Connor, P. Iacono, J. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc. 2018, 140, 6208–6211.
- 4F. Zhai, R. F. Jordan, Organometallics 2017, 36, 2784–2799.
- 5A. Nakamura, S. Ito, K. Nozaki, Chem. Rev. 2009, 109, 5215–5244.
- 6C. Chen, Nat. Rev. Chem. 2018, 2, 6–14.
- 7J. M. Kaiser, B. K. Long, Coord. Chem. Rev. 2018, 372, 141–152.
- 8B. K. Long, J. M. Eagan, M. Mulzer, G. W. Coates, Angew. Chem. Int. Ed. 2016, 55, 7106–7110; Angew. Chem. 2016, 128, 7222–7226.
- 9Y. Zhang, C. Wang, S. Mecking, Z. Jian, Angew. Chem. Int. Ed. 2020, 59, 14296–14302; Angew. Chem. 2020, 132, 14402–14408.
- 10W. Zhang, P. M. Waddell, M. A. Tiedemann, C. E. Padilla, J. Mei, L. Chen, B. P. Carrow, J. Am. Chem. Soc. 2018, 140, 8841–8850.
- 11A. M. Wilders, N. D. Contrella, J. R. Sampson, M. Zheng, R. F. Jordan, Organometallics 2017, 36, 4990–5002.
- 12J. Jung, H. Yasuda, K. Nozaki, Macromolecules 2020, 53, 2547–2556.
- 13H. Mu, L. Pan, D. Song, Y. Li, Chem. Rev. 2015, 115, 12091–12137.
- 14A. Nakamura, T. M. J. Anselment, J. Claverie, B. Goodall, R. F. Jordan, S. Mecking, B. Rieger, A. Sen, P. W. N. M. van Leeuwen, K. Nozaki, Acc. Chem. Res. 2013, 46, 1438–1449.
- 15M. Chen, C. Chen, ACS Catal. 2017, 7, 1308–1312.
- 16S. Ito, K. Munakata, A. Nakamura, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14606–14607.
- 17T. Kochi, S. Noda, K. Yoshimura, K. Nozaki, J. Am. Chem. Soc. 2007, 129, 8948–8949.
- 18E. Drent, R. van Dijk, R. van Ginkel, B. van Oort, R. I. Pugh, Chem. Commun. 2002, 744–745.
- 19“Polymerization of Olefins”: L. K. Johnson, A. M. A. Bennett, S. D. Ittel, L. Wang, A. Parthasarathy, E. Hauptman, R. D. Simpson, J. Feldman, E. B. Coughlin, WO 98/30609, 1998.
- 20C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs, D. A. Bansleben, M. W. Day, Organometallics 1998, 17, 3149–3151.
- 21T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, D. A. Bansleben, Science 2000, 287, 460–462.
- 22E. F. Connor, T. R. Younkin, J. I. Henderson, S. Hwang, R. H. Grubbs, W. P. Roberts, J. J. Litzau, J. Polym. Sci. Part A 2002, 40, 2842–2854.
- 23E. F. Connor, T. R. Younkin, J. I. Henderson, A. W. Waltman, R. H. Grubbs, Chem. Commun. 2003, 2272–2273.
- 24M. Schnitte, J. S. Scholliers, K. Riedmiller, S. Mecking, Angew. Chem. Int. Ed. 2020, 59, 3258–3263; Angew. Chem. 2020, 132, 3284–3289.
- 25P. Kenyon, M. Wörner, S. Mecking, J. Am. Chem. Soc. 2018, 140, 6685–6689.
- 26M. Schnitte, S. Lipinski, E. Schiebel, S. Mecking, Organometallics 2020, 39, 13–17.
- 27D.-P. Song, X.-C. Shi, Y.-X. Wang, J.-X. Yang, Y.-S. Li, Organometallics 2012, 31, 966–975.
- 28H.-L. Mu, W.-P. Ye, D.-P. Song, Y.-S. Li, Organometallics 2010, 29, 6282–6290.
- 29I. Göttker-Schnetmann, P. Wehrmann, C. Röhr, S. Mecking, Organometallics 2007, 26, 2348–2362.
- 30L. Falivene, T. Wiedemann, I. Göttker-Schnetmann, L. Caporaso, L. Cavallo, S. Mecking, J. Am. Chem. Soc. 2018, 140, 1305–1312.
- 31M. A. Zuideveld, P. Wehrmann, C. Röhr, S. Mecking, Angew. Chem. Int. Ed. 2004, 43, 869–873; Angew. Chem. 2004, 116, 887–891.
- 32B. S. Xin, N. Sato, A. Tanna, Y. Oishi, Y. Konishi, F. Shimizu, J. Am. Chem. Soc. 2017, 139, 3611–3614.
- 33Y. Zhang, H. Mu, L. Pan, X. Wang, Y. Li, ACS Catal. 2018, 8, 5963–5976.
- 34F. A. Hicks, J. C. Jenkins, M. Brookhart, Organometallics 2003, 22, 3533–3545.
- 35Q. H. Tran, M. Brookhart, O. Daugulis, J. Am. Chem. Soc. 2020, 142, 7198–7206.
- 36J. C. Jenkins, M. Brookhart, J. Am. Chem. Soc. 2004, 126, 5827–5842.
- 37L. Zhang, M. Brookhart, P. S. White, Organometallics 2006, 25, 1868–1874.
- 38Z. Chen, M. Mesgar, P. S. White, O. Daugulis, M. Brookhart, ACS Catal. 2015, 5, 631–636.
- 39P. Kenyon, S. Mecking, J. Am. Chem. Soc. 2017, 139, 13786–13790.
- 40C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195.
- 41G. N. Dorofeenko, Y. P. Andreichikov, É. A. Zvezdina, V. A. Bren’, G. E. Trukhan, V. V. Derbenev, A. N. Popova, Chem. Heterocycl. Compd. 1974, 10, 1177–1181.
10.1007/BF00470158 Google Scholar
- 42A. Berkefeld, S. Mecking, J. Am. Chem. Soc. 2009, 131, 1565–1574.
- 43Y.-P. Zhang, W.-W. Li, B.-X. Li, H.-L. Mu, Y.-S. Li, Dalton Trans. 2015, 44, 7382–7394.
- 44Deposition Numbers 2003990, 2008412, and 2008414 (for ((TMEDA)Ni(Cl)(o-CF3Ph)), 13, and 14) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.