Reactivity and Mechanisms of Photoactivated Heterometallic [RuIINiII] and [RuIINiIIRuII] Catalysts for Dihydrogen Generation from Water
Dr. Nour El Harakeh
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Ana C. P. de Morais
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
These authors contributed equally to this work.
Search for more papers by this authorNeha Rani
Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Javier A. G. Gomez
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
Search for more papers by this authorAbigail Cousino
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
Search for more papers by this authorCorresponding Author
Prof. Mauricio Lanznaster
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
Search for more papers by this authorCorresponding Author
Prof. Shivnath Mazumder
Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221 India
Search for more papers by this authorCorresponding Author
Prof. Cláudio N. Verani
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
Search for more papers by this authorDr. Nour El Harakeh
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Ana C. P. de Morais
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
These authors contributed equally to this work.
Search for more papers by this authorNeha Rani
Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Javier A. G. Gomez
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
Search for more papers by this authorAbigail Cousino
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
Search for more papers by this authorCorresponding Author
Prof. Mauricio Lanznaster
Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói, RJ, Brazil
Search for more papers by this authorCorresponding Author
Prof. Shivnath Mazumder
Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221 India
Search for more papers by this authorCorresponding Author
Prof. Cláudio N. Verani
Department of Chemistry, Wayne State University, Detroit, MI, 48202 USA
Search for more papers by this authorDedicated to Professor Phalguni Chaudhuri
Abstract
Two heterometallic photocatalysts were designed and probed for water reduction. Both [(bpy)2RuIINiII(L1)](ClO4)2 (1) and [(bpy)2RuIINiII(L2)2RuII(bpy)2](ClO4)2 (2) can generate the low-valent precursor involved in hydride formation prior to dihydrogen generation. However, while the bimetallic [RuIINiII] (1) requires the presence of an external photosensitizer to trigger catalytic activity, the trimetallic [RuIINiIIRuII] (2) displays significant coupling between the catalytic and light-harvesting units to promote intramolecular multielectron transfer and perform photocatalysis at the Ni center. A concerted experimental and theoretical effort proposes mechanisms to explain why 1 is unable to achieve self-supported catalysis, while 2 is fully photocatalytic.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013678-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. A. Turner, Science 2004, 305, 972–974;
- 1bN. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.
- 2S. Rau, D. Walther, J. G. Vos, Dalton Trans. 2007, 915–919.
- 3C. Königstein, J. Photochem. Photobiol. A 1995, 90, 141–152.
- 4
- 4aA. K. Mengele, C. Müller, D. Nauroozi, S. Kupfer, B. Dietzek, S. Rau, Inorg. Chem. 2020, 59, 12097–12110;
- 4bS. Kaufhold, D. Imanbaew, C. Riehn, S. Rau, Sustainable Energy Fuels 2017, 1, 2066;
- 4cG. F. Manbeck, E. Fujita, K. J. Brewer, J. Am. Chem. Soc. 2017, 139, 7843–7854;
- 4dT. A. White, S. L. H. Higgins, S. M. Arachchige, K. J. Brewer, Angew. Chem. Int. Ed. 2011, 50, 12209–12213; Angew. Chem. 2011, 123, 12417–12421;
- 4eN. Põldme, L. O'Reilly, I. Fletcher, J. Portoles, I. V. Sazanovich, M. Towrie, C. Long, J. G. Vos, M. T. Pryce, E. A. Gibson, Chem. Sci. 2019, 10, 99;
- 4fW. R. Browne, N. M. O'Boyle, J. J. McGarvey, J. G. Vos, Chem. Soc. Rev. 2005, 34, 641–663.
- 5A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, Angew. Chem. Int. Ed. 2008, 47, 564–567; Angew. Chem. 2008, 120, 574–577.
- 6A. Fihri, V. Artero, A. Pereira, M. Fontecave, Dalton Trans. 2008, 5567–5569.
- 7C. Li, M. Wang, J. Pan, P. Zhang, R. Zhang, L. Sun, J. Organomet. Chem. 2009, 694, 2814–2819.
- 8K. L. Mulfort, D. M. Tiede, J. Phys. Chem. B 2010, 114, 14572–14581.
- 9A. Mukherjee, O. Kokhan, J. Huang, J. Niklas, L. X. Chen, D. M. Tiede, K. L. Mulfort, Phys. Chem. Chem. Phys. 2013, 15, 21070–21076.
- 10F. Birkelbach, M. Winter, U. Flörke, H.-J. Haupt, C. Butzlaff, M. Lengen, E. Bill, A. X. Trautwein, K. Wieghardt, P. Chaudhuri, Inorg. Chem. 1994, 33, 3990–4001.
- 11P. Chaudhuri, M. Winter, P. Fleischhauer, W. Haase, U. Flörke, H.-J. Haupt, J. Chem. Soc. Chem. Commun. 1990, 1728–1730.
- 12C. N. Verani, T. Weyhermüller, E. Rentschler, E. Bill, P. Chaudhuri, Chem. Commun. 1998, 2475–2476.
- 13C. Krebs, M. Winter, T. Weyhermüller, E. Bill, K. Wieghardt, P. Chaudhuri, J. Chem. Soc. Chem. Commun. 1995, 1913–1915.
- 14D. A. Henckel, Y. F. Lin, T. M. McCormick, T. W. Kaminsky, B. M. Cossairt, Dalton Trans. 2016, 45, 10068–10075.
- 15D. Basu, S. Mazumder, X. Shi, H. Baydoun, J. Niklas, O. Poluektov, H. B. Schlegel, C. N. Verani, Angew. Chem. Int. Ed. 2015, 54, 2105–2110; Angew. Chem. 2015, 127, 2133–2138.
- 16H. Baydoun, S. Mazumder, H. B. Schlegel, C. N. Verani, Chem. Eur. J. 2017, 23, 9266–9271.
- 17P. H. A. Kankanamalage, D. M. B. Ekanayake, N. Singh, A. C. P. De Morais, S. Mazumder, C. N. Verani, A. Mukherjee, M. Lanznaster, New J. Chem. 2019, 43, 12795–12803.
- 18D. M. B. Ekanayake, K. M. Kulesa, S. Mazumder, K. K. Kpogo, H. B. Schlegel, C. N. Verani, Dalton Trans. 2017, 46, 16812–16820.
- 19P. H. A. Kankanamalage, S. Mazumder, V. Tiwari, K. K. Kpogo, H. B. Schlegel, C. N. Verani, Chem. Commun. 2016, 52, 13357–13360.
- 20D. Basu, S. Mazumder, X. Shi, R. J. Staples, H. B. Schlegel, C. N. Verani, Angew. Chem. Int. Ed. 2015, 54, 7139–7143; Angew. Chem. 2015, 127, 7245–7249.
- 21D. Basu, S. Mazumder, X. Shi, D. Wanniarachchi, J. Niklas, O. Poluektov, R. Staples, H. B. Schlegel, C. N. Verani, Chem. Sci. 2016, 7, 3264–3278.
- 22V. E. Uhlig, M. Friedrich, Z. Anorg. Allg. Chem. 1964, 333, 90.
- 23P. G. Hoertz, A. Staniszewski, A. Marton, G. T. Higgins, C. D. Incarvito, A. L. Rheingold, G. J. Meyer, J. Am. Chem. Soc. 2006, 128, 8234–8245.
- 24
- 24aZ.-y. Wu, R.-b. Huang, S.-y. Xie, L.-s. Zheng, Dalton Trans. 2011, 40, 8353–8360;
- 24bS. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, Top. Curr. Chem. 2007, 280, 117–214.
- 25P.-A. Jacques, V. Artero, J. Pécaut, M. Fontecave, Proc. Natl. Acad. Sci. USA 2009, 106, 20627–20632.
- 26V. Fourmond, P. A. Jacques, M. Fontecave, V. Artero, Inorg. Chem. 2010, 49, 10338–10347.
- 27R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
- 28M. Boiocchi, L. Fabbrizzi, F. Foti, M. Vázquez, Dalton Trans. 2004, 2616–2620.
- 29J. S. Miller, K. S. Min, Angew. Chem. Int. Ed. 2009, 48, 262–272; Angew. Chem. 2009, 121, 268–278.
- 30V. Artero, M. Fontecave, Chem. Soc. Rev. 2013, 42, 2338–2356.
- 31Z. Han, L. Shen, W. W. Brennessel, L. P. Holland, R. Eisenberg, J. Am. Chem. Soc. 2013, 135, 14659–14669.
- 32N. C. Virca, M. T. McCormick, Dalton Trans. 2015, 44, 14333–14340.
- 33B. Yang, J. Li, L. Zhang, G. Xu, Analyst 2016, 141, 5822.
- 34Deposition Number 2026797 contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.