Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers
Veronika Kottisch
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorJanis Jermaks
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorJoe-Yee Mak
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorRyan A. Woltornist
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Tristan H. Lambert
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Brett P. Fors
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorVeronika Kottisch
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorJanis Jermaks
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorJoe-Yee Mak
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorRyan A. Woltornist
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Tristan H. Lambert
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Brett P. Fors
Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorAbstract
The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)–organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol−1 can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013419-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. B. Grubbs, R. H. Grubbs, Macromolecules 2017, 50, 6979–6997.
- 2S. Aoshima, S. Kanaoka, Chem. Rev. 2009, 109, 5245–5287.
- 3E. Goethals, F. Duprez, Prog. Polym. Sci. 2007, 32, 220–246.
- 4 Cationic Polymerizations: Mechanisms, Synthesis and Applications (Ed.: K. Matyjaszewski), Marcel Dekker, New York, 1996.
10.1201/9780585400433 Google Scholar
- 5Q. Michaudel, V. Kottisch, B. P. Fors, Angew. Chem. Int. Ed. 2017, 56, 9670–9679; Angew. Chem. 2017, 129, 9798–9808.
- 6M. Sawamoto, Prog. Polym. Sci. 1991, 16, 111–172.
- 7M. Kamigaito, Y. Maeda, M. Sawamoto, T. Higashimura, Macromolecules 1993, 26, 1643–1649.
- 8M. Uchiyama, K. Satoh, M. Kamigaito, Angew. Chem. Int. Ed. 2015, 54, 1924–1928; Angew. Chem. 2015, 127, 1944–1948.
- 9M. Miyamoto, M. Sawamoto, T. Higashimura, Macromolecules 1984, 17, 265–268.
- 10M. Ciftci, Y. Yoshikawa, Y. Yagci, Angew. Chem. Int. Ed. 2017, 56, 519–523; Angew. Chem. 2017, 129, 534–538.
- 11V. Kottisch, Q. Michaudel, B. P. Fors, J. Am. Chem. Soc. 2016, 138, 15535–15538.
- 12B. M. Peterson, S. Lin, B. P. Fors, J. Am. Chem. Soc. 2018, 140, 2076–2079.
- 13M. J. Supej, B. M. Peterson, B. P. Fors, Chem 2020, S2451929420301996.
- 14A. J. Teator, F. A. Leibfarth, Science 2019, 363, 1439–1443.
- 15A. J. Teator, T. P. Varner, P. E. Jacky, K. A. Sheyko, F. A. Leibfarth, ACS Macro Lett. 2019, 8, 1559–1563.
- 16A. Prasher, H. Hu, J. Tanaka, D. A. Nicewicz, W. You, Polym. Chem. 2019, 10, 4126–4133.
- 17V. Kottisch, J. O'Leary, Q. Michaudel, E. E. Stache, T. H. Lambert, B. P. Fors, J. Am. Chem. Soc. 2019, 141, 10605–10609.
- 18O. Diels, Ber. Dtsch. Chem. Ges. A/B 1942, 75, 1452–1467.
- 19C. D. Gheewala, B. E. Collins, T. H. Lambert, Science 2016, 351, 961–965.
- 20C. D. Gheewala, J. S. Hirschi, W.-H. Lee, D. W. Paley, M. J. Vetticatt, T. H. Lambert, J. Am. Chem. Soc. 2018, 140, 3523–3527.
- 21E. A. Jefferson, J. Warkentin, J. Org. Chem. 1994, 59, 463–467.
- 22In contrast, with cyclic monomer dihydrofuran (DHF), the same intramolecular deprotonation is more challenging due to geometric constraints, allowing access to DPs >400.
- 23C. D. Gheewala, M. A. Radtke, J. Hui, A. B. Hon, T. H. Lambert, Org. Lett. 2017, 19, 4227–4230.
- 24M. A. Radtke, T. H. Lambert, Chem. Sci. 2018, 9, 6406–6410.
- 25A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713–5743.
- 26T. J. Auvil, A. G. Schafer, A. E. Mattson, Eur. J. Org. Chem. 2014, 2633–2646.
- 27A. A. Rodriguez, H. Yoo, J. W. Ziller, K. J. Shea, Tetrahedron Lett. 2009, 50, 6830–6833.
- 28P. R. Schreiner, Chem. Soc. Rev. 2003, 32, 289.
- 29L. A. Marchetti, L. K. Kumawat, N. Mao, J. C. Stephens, R. B. P. Elmes, Chem 2019, 5, 1398–1485.
- 30S. J. Connon, Chem. Commun. 2008, 2499.
- 31M. Kotke, P. R. Schreiner, Tetrahedron 2006, 62, 434–439.
- 32A. Rostami, A. Colin, X. Y. Li, M. G. Chudzinski, A. J. Lough, M. S. Taylor, J. Org. Chem. 2010, 75, 3983–3992.
- 33P. B. Cranwell, J. R. Hiscock, C. J. E. Haynes, M. E. Light, N. J. Wells, P. A. Gale, Chem. Commun. 2013, 49, 874–876.
- 34E. P. Farney, S. J. Chapman, W. B. Swords, M. D. Torelli, R. J. Hamers, T. P. Yoon, J. Am. Chem. Soc. 2019, 141, 6385–6391.
- 35A. Borovika, P.-I. Tang, S. Klapman, P. Nagorny, Angew. Chem. Int. Ed. 2013, 52, 13424–13428; Angew. Chem. 2013, 125, 13666–13670.
- 36Under the current conditions, polymers with molecular weights above 66 kg mol−1 have not been synthesized. The reaction becomes very viscous which causes the stirring and monomer conversion to halt. Current work is investigating the effect of solvents on the polymerization.
- 37The addition of 1 equivalent of water leads to slower polymerization, while maintaining good control. Higher amounts of water (10–40 equiv) do not prevent polymerization but lead to increased chain-transfer events (see SI). We hypothesized that water terminates the growing chains and disrupts the hydrogen bond network, causing chain transfer and lower than expected molar masses.
- 38R. F. Algera, Y. Ma, D. B. Collum, J. Am. Chem. Soc. 2017, 139, 7921–7930.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.