Molecular Cages Self-Assembled by Imine Condensation in Water
Ye Lei
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQiong Chen
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorPeiren Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLingxiang Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHongye Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorBingda Li
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXingyu Lu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024 China
Search for more papers by this authorZhong Chen
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024 China
Search for more papers by this authorProf. Yuanjiang Pan
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Feihe Huang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Hao Li
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYe Lei
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQiong Chen
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorPeiren Liu
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLingxiang Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHongye Wang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorBingda Li
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXingyu Lu
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024 China
Search for more papers by this authorZhong Chen
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024 China
Search for more papers by this authorProf. Yuanjiang Pan
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Feihe Huang
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Hao Li
Department of Chemistry, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Self-assembly by imine condensation in aqueous media is a formidable task because of the labile nature of imines in the presence of water. Here, by taking advantage of multivalence and ligand preorganization, basket-shaped triscationic cage molecules are self-assembled in high yields in both water and organic solvent, by condensing a hexaformyl and bisamine. These cages, especially the chiral ones, are stable or inert in aqueous solution, that is, no decomposition was observed upon dilution, precipitation, or exposure to competitive amines or aldehydes. Such water-compatibility allows the hosts to take advantage of the hydrophobic effect to accommodate hydrophobic guests. The chiral cage S-23+ selectively binds and distinguishes one of two enantiomers, opening up opportunities for applications such as chiral compound separation. Chiral narcissistic self-sorting and sergeants-and-soldiers effects occur during cage formation when two amino precursors are involved in self-assembly.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202013045-sup-0001-misc_information.pdf11 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Mitra, K. E. Jelfs, M. Schmidtmann, A. Ahmed, S. Y. Chong, D. J. Adams, A. I. Cooper, Nat. Chem. 2013, 5, 276–281;
- 1bY. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q. H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835–13842;
- 1cG. Wu, C. Y. Wang, T. Jiao, H. Zhu, F. Huang, H. Li, J. Am. Chem. Soc. 2018, 140, 5955–5961;
- 1dD. Zhang, T. K. Ronson, R. Lavendomme, J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 18949–18953;
- 1eX. Chang, S. Lin, G. Wang, C. Shang, Z. Wang, K. Liu, Y. Fang, P. J. Stang, J. Am. Chem. Soc. 2020, 142, 15950–15960;
- 1fG. Zhang, A. H. Emwas, U. F. S. Hameed, S. T. Arold, P. Yang, A. Chen, J. F. Xiang, N. M. Khashab, Chem 2020, 6, 1082–1096.
- 2
- 2aD. J. Cram, M. E. Tanner, R. Thomas, Angew. Chem. Int. Ed. Engl. 1991, 30, 1024–1027; Angew. Chem. 1991, 103, 1048–1051;
- 2bR. Warmuth, Angew. Chem. Int. Ed. Engl. 1997, 36, 1347–1350; Angew. Chem. 1997, 109, 1406–1409;
- 2cR. Warmuth, M. A. Marvel, Angew. Chem. Int. Ed. 2000, 39, 1117–1119;
10.1002/(SICI)1521-3773(20000317)39:6<1117::AID-ANIE1117>3.0.CO;2-E CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 1168–1171;
- 2dS. K. Körner, F. C. Tucci, D. M. Rudkevich, T. Heinz, J. Rebek, Chem. Eur. J. 2000, 6, 187–195;
10.1002/(SICI)1521-3765(20000103)6:1<187::AID-CHEM187>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 2eM. Ziegler, J. L. Brumaghim, K. N. Raymond, Angew. Chem. Int. Ed. 2000, 39, 4119–4121;
10.1002/1521-3773(20001117)39:22<4119::AID-ANIE4119>3.0.CO;2-1 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4285–4287;
- 2fM. Yoshizawa, T. Kusukawa, M. Fujita, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001, 123, 10454–10459;
- 2gD. Fiedler, R. G. Bergman, K. N. Raymond, Angew. Chem. Int. Ed. 2004, 43, 6748–6751; Angew. Chem. 2004, 116, 6916–6919;
- 2hV. M. Dong, D. Fiedler, B. Carl, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2006, 128, 14464–14465;
- 2iT. Iwasawa, R. J. Hooley, J. Rebek, Science 2007, 317, 493–496;
- 2jP. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697–1699.
- 3
- 3aD. Ajami, J. Rebek, Nat. Chem. 2009, 1, 87–90;
- 3bH. Takezawa, K. Shitozawa, M. Fujita, Nat. Chem. 2020, 12, 574–578.
- 4
- 4aM. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251–254;
- 4bB. Mondal, K. Acharyya, P. Howlader, P. S. Mukherjee, J. Am. Chem. Soc. 2016, 138, 1709–1716;
- 4cT. Uemura, R. Nakanishi, S. Mochizuki, S. Kitagawa, M. Mizuno, Angew. Chem. Int. Ed. 2016, 55, 6443–6447; Angew. Chem. 2016, 128, 6553–6557;
- 4dL. Qiu, R. McCaffrey, Y. Jin, Y. Gong, Y. Hu, H. Sun, W. Parkc, W. Zhang, Chem. Sci. 2018, 9, 676–680;
- 4eY. Wang, Y. Sun, P. Shi, M. M. Sartin, X. Lin, P. Zhang, H. Fang, P. Peng, Z. Tian, X. Cao, Chem. Sci. 2019, 10, 8076–8082.
- 5
- 5aS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898–952; Angew. Chem. 2002, 114, 938–993;
- 5bL. Wang, M. O. Vysotsky, A. Bogdan, M. Bolte, V. Böhmer, Science 2004, 304, 1312–1314;
- 5cH. Y. Au-Yeung, G. D. Pantoş, J. K. M. Sanders, Proc. Natl. Acad. Sci. USA 2009, 106, 10466–10470;
- 5dY. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634–6654;
- 5eG. Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem. Int. Ed. 2014, 53, 1516–1520; Angew. Chem. 2014, 126, 1542–1546;
- 5fS. Klotzbach, F. Beuerle, Angew. Chem. Int. Ed. 2015, 54, 10356–10360; Angew. Chem. 2015, 127, 10497–10502;
- 5gH. Li, H. Zhang, A. D. Lammer, M. Wang, X. Li, V. M. Lynch, J. L. Sessler, Nat. Chem. 2015, 7, 1003–1008;
- 5hQ. Wang, C. Yu, H. Long, Y. Du, Y. Jin, W. Zhang, Angew. Chem. Int. Ed. 2015, 54, 7550–7554; Angew. Chem. 2015, 127, 7660–7664;
- 5iQ. Wang, C. Yu, C. Zhang, H. Long, S. Azarnoush, Y. Jin, W. Zhang, Chem. Sci. 2016, 7, 3370–3376;
- 5jS. Lee, A. Yang, T. P. Moneypenny, J. S. Moore, J. Am. Chem. Soc. 2016, 138, 2182–2185.
- 6
- 6aM. L. C. Quan, D. J. Cram, J. Am. Chem. Soc. 1991, 113, 2754–2755;
- 6bX. Liu, Y. Liu, G. Li, R. Warmuth, Angew. Chem. Int. Ed. 2006, 45, 901–904; Angew. Chem. 2006, 118, 915–918;
- 6cD. Xu, R. Warmuth, J. Am. Chem. Soc. 2008, 130, 7520–7521;
- 6dM. Mastalerz, Chem. Commun. 2008, 4756–4758;
- 6eT. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Nat. Mater. 2009, 8, 973–978;
- 6fT. Hasell, X. Wu, J. T. A. Jones, J. Bacsa, A. Steiner, T. Mitra, A. Trewin, D. J. Adams, A. I. Cooper, Nat. Chem. 2010, 2, 750–755;
- 6gY. Jin, B. A. Voss, R. D. Noble, W. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6348–6351; Angew. Chem. 2010, 122, 6492–6495;
- 6hM. Mastalerz, M. W. Schneider, I. M. Oppel, O. Presly, Angew. Chem. Int. Ed. 2011, 50, 1046–1051; Angew. Chem. 2011, 123, 1078–1083;
- 6iM. W. Schneider, I. M. Oppel, H. Ott, L. G. Lechner, H. J. S. Hauswald, R. Stoll, M. Mastalerz, Chem. Eur. J. 2012, 18, 836–847;
- 6jS. Hong, M. R. Rohman, J. Jia, Y. Kim, D. Moon, Y. Kim, Y. H. Ko, E. Lee, K. Kim, Angew. Chem. Int. Ed. 2015, 54, 13241–13244; Angew. Chem. 2015, 127, 13439–13442;
- 6kK. Acharyya, P. S. Mukherjee, Angew. Chem. Int. Ed. 2019, 58, 8640–8653; Angew. Chem. 2019, 131, 8732–8745;
- 6lX. Wang, Y. Wang, H. Yang, H. Fang, R. Chen, Y. Sun, N. Zheng, K. Tan, X. Lu, Z. Tian, X. Cao, Nat. Commun. 2016, 7, 12469;
- 6mY. Wang, H. Fang, W. Zhang, Y. Zhuang, Z. Tian, X. Cao, Chem. Commun. 2017, 53, 8956–8959.
- 7
- 7aC. Givelet, J. Sun, D. Xu, T. J. Emge, A. Dhokte, R. Warmuth, Chem. Commun. 2011, 47, 4511–4513;
- 7bZ. Lin, J. Sun, B. Efremovaska, R. Warmuth, Chem. Eur. J. 2012, 18, 12864–12872;
- 7cK. Caprice, M. Pupier, A. Kruve, C. A. Schalley, F. B. L. Cougnon, Chem. Sci. 2018, 9, 1317–1322.
- 8
- 8aJ. R. Nitschke, Angew. Chem. Int. Ed. 2004, 43, 3073–3075; Angew. Chem. 2004, 116, 3135–3137;
- 8bJ. R. Nitschke, Acc. Chem. Res. 2007, 40, 103–112.
- 9
- 9aD. K. Kölmel, E. T. Kool, Chem. Rev. 2017, 117, 10358–10376;
- 9bJ. Kalia, R. T. Raines, Angew. Chem. Int. Ed. 2008, 47, 7523–7526; Angew. Chem. 2008, 120, 7633–7636;
- 9cL. Shen, N. Cao, L. Tong, X. Zhang, G. Wu, T. Jiao, Q. Yin, J. Zhu, Y. Pan, H. Li, Angew. Chem. Int. Ed. 2018, 57, 16486–16490; Angew. Chem. 2018, 130, 16724–16728;
- 9dF. B. L. Cougnon, K. Caprice, M. Pupier, A. Bauzá, A. Frontera, J. Am. Chem. Soc. 2018, 140, 12442–12450;
- 9eI. Neira, A. Blanco-Gomez, J. M. Quintela, C. Peinador, M. D. Garcia, Org. Lett. 2019, 21, 8976–8980;
- 9fA. Blanco-Gómez, Á. Fernández-Blanco, V. Blanco, J. Rodríguez, C. Peinador, M. D. García, J. Am. Chem. Soc. 2019, 141, 3959–3964;
- 9gA. Blanco-Gómez, I. Neira, J. L. Barriada, M. Melle-Franco, C. Peinador, M. D. García, Chem. Sci. 2019, 10, 10680–10686;
- 9hY. Lei, L. Shen, J. Liu, T. Jiao, Y. Zhang, C. Zhang, L. Tong, X. Hong, Y. Pan, H. Li, Chem. Commun. 2019, 55, 8297–8300;
- 9iQ. Chen, L. Chen, C. Y. Wang, T. Jiao, Y. Pan, H. Li, Chem. Commun. 2019, 55, 13108–13111;
- 9jT. Jiao, G. Wu, Y. Zhang, L. Shen, Y. Lei, C. Y. Wang, A. C. Fahrenbach, H. Li, Angew. Chem. Int. Ed. 2020, 59, 18350–18367; Angew. Chem. 2020, 132, 18506–18524.
- 10
- 10aT. Jiao, L. Chen, D. Yang, X. Li, G. Wu, P. Zeng, A. Zhou, Q. Yin, Y. Pan, B. Wu, X. Hong, X. Kong, V. M. Lynch, J. L. Sessler, H. Li, Angew. Chem. Int. Ed. 2017, 56, 14545–14550; Angew. Chem. 2017, 129, 14737–14742;
- 10bJ. C. Lauer, W. S. Zhang, F. Rominger, R. R. Schroeder, M. Mastalerz, Chem. Eur. J. 2018, 24, 1816–1820;
- 10cP. Li, S. Xu, C. Yu, Z.-Y. Li, J. Xu, Z.-M. Li, L. Zou, X. Leng, S. Gao, Z. Liu, X. Liu, S. Zhang, Angew. Chem. Int. Ed. 2020, 59, 7113–7121; Angew. Chem. 2020, 132, 7179–7187;
- 10dT. H. G. Schick, F. Rominger, M. Mastalerz, J. Org. Chem. 2020, 85, 13757–13771;
- 10eM. Ziegler, A. V. Davis, D. W. Johnson, K. N. Raymond, Angew. Chem. Int. Ed. 2003, 42, 665–668; Angew. Chem. 2003, 115, 689–692.
- 11
- 11aM. M. Green, M. P. Reidy, J. Am. Chem. Soc. 1989, 111, 6452–6454;
- 11bL. Brunsveld, A. P. H. J. Schenning, M. A. C. Broeren, H. M. Janssen, J. A. J. M. Vekemans, E. W. Meijer, Chem. Lett. 2000, 29, 292–293;
- 11cY. Wang, H. Fang, I. Tranca, H. Qi, X. Wang, A. J. Markvoort, Z. Tian, X. Cao, Nat. Commun. 2018, 9, 488.
- 12A. G. Slater, M. A. Little, A. Pulido, S. Y. Chong, D. Holden, L. Chen, C. Morgan, X. Wu, G. Cheng, R. Clowes, M. E. Briggs, T. Hasell, K. E. Jelfs, G. M. Day, A. I. Cooper, Nat. Chem. 2017, 9, 17–25.
- 13
- 13aN. Ponnuswamy, F. B. L. Cougnon, J. M. Clough, G. D. Pantoş, J. K. M. Sanders, Science 2012, 338, 783–785;
- 13bL. L. Dang, Z. B. Sun, W. L. Shan, Y. J. Lin, Z. H. Li, G. X. Jin, Nat. Commun. 2019, 10, 2057.
- 14Q. Wu, P. M. Rauscher, X. Lang, R. J. Wojtecki, J. J. de Pablo, M. J. A. Hore, S. J. Rowan, Science 2017, 358, 1434–1439.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.