A Stable Triplet-Ground-State Conjugated Diradical Based on a Diindenopyrazine Skeleton
Zi-Yuan Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorYa-Zhong Dai
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorLi Ding
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorBo-Wei Dong
Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Shang-Da Jiang
Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Jie-Yu Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Jian Pei
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorZi-Yuan Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorYa-Zhong Dai
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorLi Ding
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorBo-Wei Dong
Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Shang-Da Jiang
Beijing National Laboratory for Molecular Science (BNLMS), Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Jie-Yu Wang
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Jian Pei
Beijing National Laboratory for Molecular Sciences (BNLMS), The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
Search for more papers by this authorAbstract
High-spin conjugated radicals have great potential in magnetic materials and organic spintronics. However, to obtain high-spin conjugated radicals is still quite challenging due to their poor stability. We report the successful synthesis and isolation of a stable triplet conjugated diradical, 10,12-diaryldiindeno[1,2-b:2′,1′-e]pyrazine (m-DIP). With the m-xylylene analogue skeleton containing electron-deficient sp2-nitrogen atoms, m-DIP displays significant aromatic character within its pyrazine ring and its spin density mainly delocalizes on the meta-pyrazine unit, making it a triplet ground state conjugated diradical. Our work provides an effective “spin density tuning” strategy for stable high-spin conjugated radicals.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202012989-sup-0001-misc_information.pdf3.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Rajca, J. Wongsriratanakul, S. Rajca, Science 2001, 294, 1503–1505;
- 1bI. Ratera, J. Veciana, Chem. Soc. Rev. 2012, 41, 303–349.
- 2
- 2aH. Phan, T. S. Herng, D. Wang, X. Li, W. Zeng, J. Ding, K. P. Loh, A. T. Shen Wee, J. Wu, Chem 2019, 5, 1223–1234;
- 2bJ. Mahmood, J. Park, D. Shin, H.-J. Choi, J.-M. Seo, J.-W. Yoo, J.-B. Baek, Chem 2018, 4, 2357–2369.
- 3
- 3aG. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. P. Ortiz, C. J. Gomez-Garcia, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem. 2016, 8, 753–759;
- 3bZ. Zeng, Y. M. Sung, N. Bao, D. Tan, R. Lee, J. L. Zafra, B. S. Lee, M. Ishida, J. Ding, J. T. López Navarrete, Y. Li, W. Zeng, D. Kim, K.-W. Huang, R. D. Webster, J. Casado, J. Wu, J. Am. Chem. Soc. 2012, 134, 14513–14525;
- 3cX. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, F. Li, Nature 2018, 563, 536–540.
- 4
- 4aC. Herrmann, G. C. Solomon, M. A. Ratner, J. Am. Chem. Soc. 2010, 132, 3682–3684;
- 4bS. Shil, D. Bhattacharya, A. Misra, D. J. Klein, Phys. Chem. Chem. Phys. 2015, 17, 23378–23383.
- 5
- 5aA. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagne, D. Shiomi, K. Sato, T. Takui, K. Matsumoto, H. Kurata, T. Kubo, J. Am. Chem. Soc. 2010, 132, 11021–11023;
- 5bA. Konishi, Y. Hirao, K. Matsumoto, H. Kurata, R. Kishi, Y. Shigeta, M. Nakano, K. Tokunaga, K. Kamada, T. Kubo, J. Am. Chem. Soc. 2013, 135, 1430–1437.
- 6
- 6aM. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416–7417;
- 6bD.-e. Jiang, B. G. Sumpter, S. Dai, J. Chem. Phys. 2007, 127, 124703;
- 6cJ. Ma, J. Liu, M. Baumgarten, Y. Fu, Y.-Z. Tan, K. S. Schellhammer, F. Ortmann, G. Cuniberti, H. Komber, R. Berger, K. Müllen, X. Feng, Angew. Chem. Int. Ed. 2017, 56, 3280–3284; Angew. Chem. 2017, 129, 3328–3332.
- 7I. Ciofini, C. Adamo, V. Barone, G. Berthier, A. Rassat, Chem. Phys. 2005, 309, 133–141.
- 8P. G. Wenthold, J. B. Kim, W. C. Lineberger, J. Am. Chem. Soc. 1997, 119, 1354–1359.
- 9
- 9aW. T. Borden, E. R. Davidson, J. Am. Chem. Soc. 1977, 99, 4587–4594;
- 9bJ. J. Dressler, M. M. Haley, J. Phys. Org. Chem. 2020, 33, 4114.
- 10I. A. Latif, S. Hansda, S. N. Datta, J. Phys. Chem. A 2012, 116, 8599–8607.
- 11
- 11aG. Zhang, S. Li, Y. Jiang, Tetrahedron 2003, 59, 3499–3504.
- 12S. N. Intorp, M. Hodecker, M. Muller, O. Tverskoy, M. Rosenkranz, E. Dmitrieva, A. A. Popov, F. Rominger, J. Freudenberg, A. Dreuw, U. H. F. Bunz, Angew. Chem. Int. Ed. 2020, 59, 12396–12401; Angew. Chem. 2020, 132, 12496–12501.
- 13X. Lu, S. Lee, J. O. Kim, T. Y. Gopalakrishna, H. Phan, T. S. Herng, Z. Lim, Z. Zeng, J. Ding, D. Kim, J. Wu, J. Am. Chem. Soc. 2016, 138, 13048–13058.
- 14J. J. Dressler, Z. Zhou, J. L. Marshall, R. Kishi, S. Takamuku, Z. Wei, S. N. Spisak, M. Nakano, M. A. Petrukhina, M. M. Haley, Angew. Chem. Int. Ed. 2017, 56, 15363–15367; Angew. Chem. 2017, 129, 15565–15569.
- 15R. Q. Lu, S. Wu, L. L. Yang, W. B. Gao, H. Qu, X. Y. Wang, J. B. Chen, C. Tang, H. Y. Shi, X. Y. Cao, Angew. Chem. Int. Ed. 2019, 58, 7600–7605; Angew. Chem. 2019, 131, 7682–7687.
- 16D. T. Chase, A. G. Fix, S. J. Kang, B. D. Rose, C. D. Weber, Y. Zhong, L. N. Zakharov, M. C. Lonergan, C. Nuckolls, M. M. Haley, J. Am. Chem. Soc. 2012, 134, 10349–10352.
- 17
- 17aD. T. Chase, A. G. Fix, B. D. Rose, C. D. Weber, S. Nobusue, C. E. Stockwell, L. N. Zakharov, M. C. Lonergan, M. M. Haley, Angew. Chem. Int. Ed. 2011, 50, 11103–11106; Angew. Chem. 2011, 123, 11299–11302;
- 17bA. Shimizu, Y. Tobe, Angew. Chem. Int. Ed. 2011, 50, 6906–6910; Angew. Chem. 2011, 123, 7038–7042.
- 18A. R. Chaudhry, R. Ahmed, A. Irfan, A. Shaari, A. G. Al-Sehemi, Mater. Chem. Phys. 2013, 138, 468–478.
- 19O. Hammerich, V. D. Parker, J. Am. Chem. Soc. 1974, 96, 4289–4296.
- 20
- 20aW. Zeng, S. Lee, M. Son, M. Ishida, K. Furukawa, P. Hu, Z. Sun, D. Kim, J. Wu, Chem. Sci. 2015, 6, 2427–2433;
- 20bY. Li, K.-W. Huang, Z. Sun, R. D. Webster, Z. Zeng, W. Zeng, C. Chi, K. Furukawa, J. Wu, Chem. Sci. 2014, 5, 1908–1914.
- 21Y.-Z. Dai, B.-W. Dong, Y. Kao, Z.-Y. Wang, H.-I. Un, Z. Liu, Z.-J. Lin, L. Li, F.-B. Xie, Y. Lu, M.-X. Xu, T. Lei, Y.-J. Sun, J.-Y. Wang, S. Gao, S.-D. Jiang, J. Pei, ChemPhysChem 2018, 19, 2972–2977.
- 22Z. Hu, B.-W. Dong, Z. Liu, J.-J. Liu, J. Su, C. Yu, J. Xiong, D.-E. Shi, Y. Wang, B.-W. Wang, A. Ardavan, Z. Shi, S.-D. Jiang, S. Gao, J. Am. Chem. Soc. 2018, 140, 1123–1130.
- 23M. J. Graham, C.-J. Yu, M. D. Krzyaniak, M. R. Wasielewski, D. E. Freedman, J. Am. Chem. Soc. 2017, 139, 3196–3201.
- 24A. Ardavan, O. Rival, J. J. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, R. E. Winpenny, Phys. Rev. Lett. 2007, 98, 057201.
- 25R. Gershoni-Poranne, A. Stanger, Chem. Eur. J. 2014, 20, 5673–5688.
- 26K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260.
- 27R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214–3220.
- 28H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 2001, 115, 3540–3544.
- 29A. Stanger, J. Org. Chem. 2010, 75, 2281–2288.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.