Catalytic Dehydrogenative Cyclization of o-Teraryls under pH-Neutral and Oxidant-Free Conditions
Corresponding Author
Tatsuhiro Tsukamoto
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorCorresponding Author
Guangbin Dong
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorCorresponding Author
Tatsuhiro Tsukamoto
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorCorresponding Author
Guangbin Dong
Department of Chemistry, University of Chicago, Chicago, IL, 60637 USA
Search for more papers by this authorDedicated to Professor Eiichi Nakamura on the occasion of his 70th birthday
Abstract
A cobaloxime-catalyzed acceptorless dehydrogenative cyclization of o-teraryls was developed. In stark contrast to the established methods such as the Scholl or Mallory reactions, this method does not require any strong acids or oxidants, and shows high atom economy and a broad substrate scope. It operates at near room temperature with light as the source of energy. Acid- or oxidant-sensitive functional groups, such as 4-methoxyphenyl, unprotected benzyl alcohol, silyl ether, and thiophene groups are tolerated. Remarkably, aryls with electron-withdrawing groups, and electron-poor heteroarenes, such as pyridine and pyrimidine, can also react. Preliminary mechanistic study reveals that hydrogen gas is released during the reaction, and both light and the cobalt catalyst are important for the dehydrogenation step.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202004719-sup-0001-misc_information.pdf10.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Löwe, Z. Chem. 1868, 4, 603–604;
- 1bA. T. Balaban, C. D. Nenitzescu in Friedel–Crafts and Related Reactions, Vol. 2 (Eds: ), Wiley, New York, 1964, pp. 979–1047; For reviews on Scholl reaction, see;
- 1cM. Grzybowski, K. Skonieczny, H. Butenschoen, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900–9930; Angew. Chem. 2013, 125, 10084–10115.
- 2Recent reviews of synthesis of PAHs:
- 2aD. Pérez, E. Guitián, Chem. Soc. Rev. 2004, 33, 274–283;
- 2bK. Y. Yoon, G. Dong, Mater. Chem. Front. 2020, 4, 29–45;
- 2cA. Jolly, D. Miao, M. Daigle, J. F. Morin, Angew. Chem. Int. Ed. 2020, 59, 4624–4633; Angew. Chem. 2020, 132, 4652–4661;
- 2dB. P. Mathew, M. R. Kuram, Inorg. Chim. Acta 2019, 490, 112–129;
- 2eY. Segawa, T. Maekawa, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66–81; Angew. Chem. 2015, 127, 68–83.
- 3
- 3aB. T. King, J. Kroulík, C. R. Robertson, P. Rempala, C. L. Hilton, J. D. Korinek, L. M. Gortari, J. Org. Chem. 2007, 72, 2279–2288;
- 3bX. Dou, X. Yang, G. J. Bodwell, M. Wagner, V. Enkelmann, K. Müllen, Org. Lett. 2007, 9, 2485–2488.
- 4S. Fujimoto, K. Matsumoto, M. Shindo, Adv. Synth. Catal. 2016, 358, 3057–3061.
- 5P. Röse, S. Emge, C. A. König, G. Hilt, Adv. Synth. Catal. 2017, 359, 1359–1372.
- 6
- 6aL. Liu, B. Yang, T. J. Katz, M. K. Poindexter, J. Org. Chem. 1991, 56, 3769–3775;
- 6bK. B. Jørgensen, Molecules 2010, 15, 4334–4358;
- 6cF. B. Mallory, C. W. Mallory, Org. React. 1984, 30, 1–456.
- 7
- 7aM. Shimizu, I. Nagao, Y. Tomioka, T. Kadowaki, T. Hiyama, Tetrahedron 2011, 67, 8014–8026;
- 7bJ. Tu, G. Li, X. Zhao, F. Xu, Tetrahedron Lett. 2019, 60, 44–47;
- 7cK. Murayama, Y. Sawada, K. Noguchi, K. Tanaka, J. Org. Chem. 2013, 78, 6202–6210;
- 7dT. T. Jayanth, C. H. Cheng, Chem. Commun. 2006, 894–896;
- 7eM. Iwasaki, Y. Araki, S. Iino, Y. Nishihara, J. Org. Chem. 2015, 80, 9247–9263.
- 8H-OMe eliminative photocyclization:
- 8aR. G. Giles, M. V. Sargent, J. Chem. Soc. Perkin Trans. 1 1974, 2447–2450; For H-Cl eliminative photocyclization, see;
- 8bM. Daigle, A. Picard-Lafond, E. Soligo, J. F. Morin, Angew. Chem. Int. Ed. 2016, 55, 2042–2047; Angew. Chem. 2016, 128, 2082–2087; For H-F eliminative photocyclization, see:
- 8cO. Allemann, S. Duttwyler, P. Romanato, K. K. Baldridge, J. S. Siegel, Science 2011, 332, 574–577;
- 8dK. Y. Amsharov, P. Merz, J. Org. Chem. 2012, 77, 5445–5448.
- 9Recent reviews:
- 9aJ. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res. 2009, 42, 1995–2004;
- 9bN. Kaeffer, M. Chavarot-Kerlidou, V. Artero, Acc. Chem. Res. 2015, 48, 1286–1295.
- 10Selected examples:
- 10aY. W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q. Y. Meng, L. Z. Wu, C. H. Tung, J. Am. Chem. Soc. 2016, 138, 10080–10083;
- 10bQ. Yang, L. Zhang, C. Ye, S. Luo, L. Z. Wu, C. H. Tung, Angew. Chem. Int. Ed. 2017, 56, 3694–3698; Angew. Chem. 2017, 129, 3748–3752;
- 10cX. W. Gao, Q. Y. Meng, J. X. Li, J. J. Zhong, T. Lei, X. B. Li, C. H. Tung, L. Z. Wu, ACS Catal. 2015, 5, 2391–2396;
- 10dX. Hu, G. Zhang, F. Bu, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 1286–1290; Angew. Chem. 2018, 130, 1300–1304;
- 10eF. Zhao, Q. Yang, J. Zhang, W. Shi, H. Hu, F. Liang, W. Wei, S. Zhou, Org. Lett. 2018, 20, 7753–7757;
- 10fH. Yi, L. Niu, C. Song, Y. Li, B. Dou, A. K. Singh, A. Lei, Angew. Chem. Int. Ed. 2017, 56, 1120–1124; Angew. Chem. 2017, 129, 1140–1144;
- 10gL. Niu, H. Yi, S. Wang, T. Liu, J. Liu, A. Lei, Nat. Commun. 2017, 8, 14226;
- 10hG. Zhang, Y. Lin, X. Luo, X. Hu, C. Chen, A. Lei, Nat. Commun. 2018, 9, 1225;
- 10iG. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen, J. X. Jian, L. Z. Wu, A. Lei, J. Am. Chem. Soc. 2015, 137, 9273–9280;
- 10jJ. J. Zhong, Q. Y. Meng, B. Liu, X. B. Li, X. W. Gao, T. Lei, C. J. Wu, Z. J. Li, C. H. Tung, L. Z. Wu, Org. Lett. 2014, 16, 1988–1991;
- 10kG. Zhang, X. Hu, C. W. Chiang, H. Yi, P. Pei, A. K. Singh, A. Lei, J. Am. Chem. Soc. 2016, 138, 12037–12040;
- 10lC. J. Wu, Q. Y. Meng, T. Lei, J. J. Zhong, W. Q. Liu, L. M. Zhao, Z. J. Li, B. Chen, C. H. Tung, L. Z. Wu, ACS Catal. 2016, 6, 4635–4639;
- 10mM. Xiang, Q. Y. Meng, J. X. Li, Y. W. Zheng, C. Ye, Z. J. Li, B. Chen, C. H. Tung, L. Z. Wu, Chem. Eur. J. 2015, 21, 18080–18084;
- 10nK. H. He, F. F. Tan, C. Z. Zhou, G. J. Zhou, X. L. Yang, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 3080–3084; Angew. Chem. 2017, 129, 3126–3130;
- 10oW. Cao, C. Wu, T. Lei, X. Yang, B. Chen, C. Tung, L. Wu, Chin. J. Catal. 2018, 39, 1194–1201.
- 11Catalyst-free direct photochemical annulation of special styrene-type substrates: J. Zhang, X. Zhang, T. Wang, X. Yao, P. Wang, P. Wang, S. Jing, Y. Liang, Z. Zhang, J. Org. Chem. 2017, 82, 12097–12105.
- 12
- 12aG. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681–703;
- 12bM. Momirlan, T. N. Veziroglu, Int. J. Hydrogen Energy 2005, 30, 795–802;
- 12cA. Sartbaeva, V. L. Kuznetsov, S. A. Wells, P. P. Edwards, Energy Environ. Sci. 2008, 1, 79;
- 12dN. Armaroli, V. Balzani, ChemSusChem 2011, 4, 21;
- 12eG. Gunanathan, D. Milstein, Science 2013, 341, 1229712;
- 12fA. C. Marr, Catal. Sci. Technol. 2012, 2, 279–287.
- 13T. J. Cuppen, W. H. Laarhoven, J. Am. Chem. Soc. 1972, 94, 5914–5915.
- 14J. G. West, D. Huang, E. J. Sorensen, Nat. Commun. 2015, 6, 10093.
- 15F. B. Mallory, C. S. Wood, J. Org. Chem. 1964, 29, 3374–3377.
- 16A. Yamamoto, Y. Matsui, T. Asada, M. Kumeda, K. Takagi, Y. Suenaga, N. Nagae, E. Ohta, H. Sato, S. Koseki, H. Naito, H. Ikeda, J. Org. Chem. 2016, 81, 3168–3176.
- 17T. Sato, S. Shimada, K. Hata, Bull. Chem. Soc. Jpn. 1971, 44, 2484–2490.
- 18W. Q. Liu, T. Lei, S. Zhou, X. L. Yang, J. Li, B. Chen, J. Sivaguru, C. H. Tung, L. Z. Wu, J. Am. Chem. Soc. 2019, 141, 13941–13947.
- 19N. P. Schepp, L. J. Johnston, J. Am. Chem. Soc. 1996, 118, 2872–2881.
- 20pKa values of hydrocarbon radical cations are known to be very low (in DMSO, for example, toluene's pKa (C−H⋅+)=−23 and 9,10-dihydroanthracene's pKa (C−H⋅+)=−24). Thus, the CoI-mediated deprotonation from II, (Figure 1) or 1,4-dihydronaphthalene radical cation (Scheme 2 C) is feasible. BDE values of hydrocarbon radical cations are known to be very low too. For reported pKa/BDE values of hydrocarbon radical cations, see
- 20aX. Zhang, F. G. Bordwell, J. Org. Chem. 1992, 57, 4163–4168;
- 20bX. S. Xue, P. Ji, B. Zhou, J. P. Cheng, Chem. Rev. 2017, 117, 8622–8648.
- 21T. H. Chao, J. H. Espenson, J. Am. Chem. Soc. 1978, 100, 129–133.
- 22Using this method to prepare nanographenes was unfruitful under the current reaction conditions primarily due to the solubility issue of the substrate in MeCN.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.