Early Transition Metal Catalysis for Olefin–Polar Monomer Copolymerization
Dr. Jiazhen Chen
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Dr. Yanshan Gao
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Prof. Tobin J. Marks
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorDr. Jiazhen Chen
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Dr. Yanshan Gao
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorCorresponding Author
Prof. Tobin J. Marks
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorAbstract
Introducing polar functional groups into widely used polyolefins can enhance polymer surface, rheological, mixing, and other properties, potentially upgrading polyolefins for advanced, value-added applications. The metal catalyst-mediated copolymerization of non-polar olefins with polar comonomers represents the seemingly most straightforward, atom- and energy-efficient approach for synthesizing polar functionalized polyolefins. However, electrophilic early transition metal (groups 3 and 4)-catalyzed processes which have achieved remarkable success in conventional olefin polymerizations, encounter severe limitations here, largely associated with the Lewis basicity of the polar co-monomers. In recent years, however, new catalytic systems have been developed and successful strategies have emerged. In this Minireview, we summarize the recent progress in early transition metal polymerization catalyst development, categorized by the catalytic metal complex and polar comonomer identity. Furthermore, we discuss advances in the mechanistic understanding of these polymerizations, focusing on critical challenges and strategies that mitigate them.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. Stürzel, S. Mihan, R. Mülhaupt, Chem. Rev. 2016, 116, 1398–1433.
- 2
- 2aC. Zou, C. Chen, Angew. Chem. Int. Ed. 2020, 59, 395–402; Angew. Chem. 2020, 132, 403–410;
- 2bJ. Gao, W. Cai, Y. Hu, C. Chen, Polym. Chem. 2019, 10, 1416–1422;
- 2cG. Zhang, C. Nam, L. Petersson, J. Jämbeck, H. Hillborg, T. C. M. Chung, Macromolecules 2018, 51, 1927–1936;
- 2dY. Na, S. Dai, C. Chen, Macromolecules 2018, 51, 4040–4048;
- 2eT. Rünzi, S. Mecking, Adv. Funct. Mater. 2014, 24, 387–395;
- 2fN. M. G. Franssen, J. N. H. Reek, B. de Bruin, Chem. Soc. Rev. 2013, 42, 5809–5832;
- 2gT. C. M. Chung, Macromolecules 2013, 46, 6671–6698.
- 3C. Chen, Nat. Rev. Chem. 2018, 2, 6–14.
- 4
- 4aC. Tan, C. Chen, Angew. Chem. Int. Ed. 2019, 58, 7192–7200; Angew. Chem. 2019, 131, 7268–7276;
- 4bB. P. Carrow, K. Nozaki, Macromolecules 2014, 47, 2541–2555.
- 5
- 5aT. Liang, S. B. Goudari, C. Chen, Nat. Commun. 2020, 11, 372;
- 5bD. J. Walsh, M. G. Hyatt, S. A. Miller, D. Guironnet, ACS Catal. 2019, 9, 11153–11188;
- 5cX. Wang, K. Nozaki, J. Am. Chem. Soc. 2018, 140, 15635–15640.
- 6
- 6aD. Liu, M. Wang, Z. Wang, C. Wu, Y. Pan, D. Cui, Angew. Chem. Int. Ed. 2017, 56, 2714–2719; Angew. Chem. 2017, 129, 2758–2763;
- 6bF. Guo, N. Jiao, L. Jiang, Y. Li, Z. Hou, Macromolecules 2017, 50, 8398–8405;
- 6cZ. Wang, D. Liu, D. Cui, Macromolecules 2016, 49, 781–787;
- 6dC. Yao, N. Liu, S. Long, C. Wu, D. Cui, Polym. Chem. 2016, 7, 1264–1270.
- 7
- 7a“3.24—Copolymerization of Alkenes and Polar Monomers by Early and Late Transition Metal Catalysts”: A. Schöbel, M. Winkenstette, T. M. J. Anselment, B. Rieger, in Polymer Science: A Comprehensive Reference (Eds.: ), Elsevier, Amsterdam, 2012, pp. 779–823;
- 7bM. J. Yanjarappa, S. Sivaram, Prog. Polym. Sci. 2002, 27, 1347–1398;
- 7cL. S. Boffa, B. M. Novak, Chem. Rev. 2000, 100, 1479–1493.
- 8
- 8aH. Leicht, J. Bauer, I. Goettker-Schnetmann, S. Mecking, Macromolecules 2018, 51, 763–770;
- 8bH. Leicht, I. Goettker-Schnetmann, S. Mecking, Macromolecules 2017, 50, 8464–8468.
- 9
- 9aB.-C. Xu, T. Hu, J.-Q. Wu, N.-H. Hu, Y.-S. Li, Dalton Trans. 2009, 8854–8863;
- 9bJ.-S. Mu, J.-Y. Liu, S.-R. Liu, Y.-S. Li, Polymer 2009, 50, 5059–5064.
- 10
- 10aY. Gao, J. Chen, Y. Wang, D. Pickens, A. Motta, Q. J. Wang, Y.-W. Chung, T. L. Lohr, T. J. Marks, Nat. Catal. 2019, 2, 236–242;
- 10bM. C. Baier, M. A. Zuideveld, S. Mecking, Angew. Chem. Int. Ed. 2014, 53, 9722–9744; Angew. Chem. 2014, 126, 9878–9902;
- 10cM. Delferro, T. J. Marks, Chem. Rev. 2011, 111, 2450–2485;
- 10dD. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman, T. T. Wenzel, Science 2006, 312, 714–719.
- 11J.-i. Imuta, N. Kashiwa, Y. Toda, J. Am. Chem. Soc. 2002, 124, 1176–1177.
- 12H. Terao, S. Ishii, M. Mitani, H. Tanaka, T. Fujita, J. Am. Chem. Soc. 2008, 130, 17636–17637.
- 13
- 13aZ. Chen, J.-F. Li, W.-J. Tao, X.-L. Sun, X.-H. Yang, Y. Tang, Macromolecules 2013, 46, 2870–2875;
- 13bX.-H. Yang, C.-R. Liu, C. Wang, X.-L. Sun, Y.-H. Guo, X.-K. Wang, Z. Wang, Z. Xie, Y. Tang, Angew. Chem. Int. Ed. 2009, 48, 8099–8102; Angew. Chem. 2009, 121, 8243–8246.
- 14M. Hong, Y.-X. Wang, H.-L. Mu, Y.-S. Li, Organometallics 2011, 30, 4678–4686.
- 15X. Zhang, S. Chen, H. Li, Z. Zhang, Y. Lu, C. Wu, Y. Hu, J. Polym. Sci. Part A 2007, 45, 59–68.
- 16U. M. Stehling, K. M. Stein, M. R. Kesti, R. M. Waymouth, Macromolecules 1998, 31, 2019–2027.
- 17N. Guo, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 2008, 130, 2246–2261.
- 18G. W. Coates, Chem. Rev. 2000, 100, 1223–1252.
- 19
- 19aL. Guo, W. Liu, C. Chen, Mater. Chem. Front. 2017, 1, 2487–2494;
- 19bY. Ota, S. Ito, M. Kobayashi, S. Kitade, K. Sakata, T. Tayano, K. Nozaki, Angew. Chem. Int. Ed. 2016, 55, 7505–7509; Angew. Chem. 2016, 128, 7631–7635;
- 19cR. Nakano, K. Nozaki, J. Am. Chem. Soc. 2015, 137, 10934–10937;
- 19dL. K. Johnson, S. Mecking, M. Brookhart, J. Am. Chem. Soc. 1996, 118, 267–268.
- 20H. Hagihara, K. Tsuchihara, J. Sugiyama, K. Takeuchi, T. Shiono, Macromolecules 2004, 37, 5145–5148.
- 21
- 21aH. Hagihara, T. Ishihara, H. T. Ban, T. Shiono, J. Polym. Sci. Part A 2008, 46, 1738–1748;
- 21bH. Hagihara, K. Tsuchihara, K. Takeuchi, M. Murata, H. Ozaki, T. Shiono, J. Polym. Sci. Part A 2004, 42, 52–58.
- 22
- 22aH. Hagihara, K. Ito, S. Kimata, Macromolecules 2013, 46, 4432–4437;
- 22bY. Iizuka, J.-i. Sugiyama, H. Hagihara, Macromolecules 2009, 42, 2321–2323.
- 23M. Zhang, X. Yuan, L. Wang, T. C. M. Chung, T. Huang, W. de Groot, Macromolecules 2014, 47, 571–581.
- 24G. Zhang, H. Li, M. Antensteiner, T. C. M. Chung, Macromolecules 2015, 48, 2925–2934.
- 25P. Zhao, D. Shpasser, M. S. Eisen, J. Polym. Sci. Part A 2012, 50, 523–533.
- 26
- 26aJ. M. Eagan, J. Xu, R. Di Girolamo, C. M. Thurber, C. W. Macosko, A. M. LaPointe, F. S. Bates, G. W. Coates, Science 2017, 355, 814–816;
- 26bT. R. Boussie, G. M. Diamond, C. Goh, K. A. Hall, A. M. LaPointe, M. K. Leclerc, V. Murphy, J. A. W. Shoemaker, H. Turner, R. K. Rosen, J. C. Stevens, F. Alfano, V. Busico, R. Cipullo, G. Talarico, Angew. Chem. Int. Ed. 2006, 45, 3278–3283; Angew. Chem. 2006, 118, 3356–3361.
- 27X. Wang, Y. Wang, X. Shi, J. Liu, C. Chen, Y. Li, Macromolecules 2014, 47, 552–559.
- 28R. Shang, H. Gao, F. Luo, Y. Li, B. Wang, Z. Ma, L. Pan, Y. Li, Macromolecules 2019, 52, 9280–9290.
- 29U. M. Stehling, E. E. Malmstroem, R. M. Waymouth, C. J. Hawker, Macromolecules 1998, 31, 4396–4398.
- 30M. Huang, J. Chen, B. Wang, H. Chen, Y. Gao, T. J. Marks, submitted 2019.
- 31H. Yasuda, J. Organomet. Chem. 2002, 647, 128–138.
- 32
- 32aM. Nishiura, Z. Hou, Nat. Chem. 2010, 2, 257–268;
- 32bY. Nakayama, H. Yasuda, J. Organomet. Chem. 2004, 689, 4489–4498;
- 32cZ. Hou, Y. Wakatsuki, Coord. Chem. Rev. 2002, 231, 1–22.
- 33
- 33aY. Luo, J. Baldamus, Z. Hou, J. Am. Chem. Soc. 2004, 126, 13910–13911;
- 33bC. Hultzsch Kai, P. Spaniol Thomas, J. Okuda, Angew. Chem. Int. Ed. 1999, 38, 227–230; Angew. Chem. 1999, 111, 163–165.
- 34M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res. 2015, 48, 2209–2220.
- 35I. Tritto, A. Ravasio, L. Boggioni, F. Bertini, J. Hitzbleck, J. Okuda, Macromol. Chem. Phys. 2010, 211, 897–904.
- 36C. Wang, G. Luo, M. Nishiura, G. Song, A. Yamamoto, Y. Luo, Z. Hou, Sci. Adv. 2017, 3, e1701011.
- 37H. Wang, Y. Yang, M. Nishiura, Y. Higaki, A. Takahara, Z. Hou, J. Am. Chem. Soc. 2019, 141, 3249–3257.
- 38J. Chen, Y. Gao, B. Wang, T. L. Lohr, T. J. Marks, Angew. Chem. Int. Ed. 2017, 56, 15964–15968; Angew. Chem. 2017, 129, 16180–16184.
- 39B. Liu, K. Qiao, J. Fang, T. Wang, Z. Wang, D. Liu, Z. Xie, L. Maron, D. Cui, Angew. Chem. Int. Ed. 2018, 57, 14896–14901; Angew. Chem. 2018, 130, 15112–15117.
- 40D. Liu, C. Yao, R. Wang, M. Wang, Z. Wang, C. Wu, F. Lin, S. Li, X. Wan, D. Cui, Angew. Chem. Int. Ed. 2015, 54, 5205–5209; Angew. Chem. 2015, 127, 5294–5298.
- 41S. Li, D. Liu, Z. Wang, D. Cui, ACS Catal. 2018, 8, 6086–6093.
- 42H. Wang, Y. Zhao, M. Nishiura, Y. Yang, G. Luo, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2019, 141, 12624–12633.
- 43
- 43aJ. Chen, A. Motta, J. Zhang, Y. Gao, T. J. Marks, ACS Catal. 2019, 9, 8810–8818;
- 43bP. J. Chirik, J. E. Bercaw, Organometallics 2005, 24, 5407–5423;
- 43cG. Lanza, I. Fragala, T. J. Marks, Organometallics 2001, 20, 4006–4017.
- 44R. A. Stockland, R. F. Jordan, J. Am. Chem. Soc. 2000, 122, 6315–6316.
- 45Another scenario in which both olefin and polar functional group coordinate to the metal center will be discussed in Section 4.2 on comonomer enchainment.
- 46G. Stojcevic, M. C. Baird, Dalton Trans. 2009, 8864–8877.
- 47I. Jun-ichi, T. Yoshihisa, K. Norio, Chem. Lett. 2001, 30, 710–711.
- 48J. Chen, A. Motta, B. Wang, Y. Gao, T. J. Marks, Angew. Chem. Int. Ed. 2019, 58, 7030–7034; Angew. Chem. 2019, 131, 7104–7108.
- 49U. M. Stehling, K. M. Stein, D. Fischer, R. M. Waymouth, Macromolecules 1999, 32, 14–20.
- 50M. R. Radlauer, A. K. Buckley, L. M. Henling, T. Agapie, J. Am. Chem. Soc. 2013, 135, 3784–3787.
- 51D. Liu, M. Wang, Y. Chai, X. Wan, D. Cui, ACS Catal. 2019, 9, 2618–2625.
- 52Y. Zhao, G. Luo, X. Wang, X. Kang, D. Cui, Z. Hou, Y. Luo, Organometallics 2018, 37, 3210–3218.
- 53H. Leicht, I. Göttker-Schnetmann, S. Mecking, J. Am. Chem. Soc. 2017, 139, 6823–6826.
- 54M. Bouyahyi, Y. Turki, A. Tanwar, L. Jasinska-Walc, R. Duchateau, ACS Catal. 2019, 9, 7779–7790.
- 55
- 55aX. Shi, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 2016, 138, 6147–6150;
- 55bX. Shi, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 14812–14817; Angew. Chem. 2016, 128, 15032–15037.
- 56
- 56aA. Yamamoto, M. Nishiura, J. Oyamada, H. Koshino, Z. Hou, Macromolecules 2016, 49, 2458–2466;
- 56bS. B. Amin, T. J. Marks, Angew. Chem. Int. Ed. 2008, 47, 2006–2025; Angew. Chem. 2008, 120, 2034–2054.
- 57
- 57aB. Liu, D. Cui, Macromolecules 2016, 49, 6226–6231;
- 57bL. Pan, K. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50, 12012–12015; Angew. Chem. 2011, 123, 12218–12221.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.