Oriented (Local) Electric Fields Drive the Millionfold Enhancement of the H-Abstraction Catalysis Observed for Synthetic Metalloenzyme Analogues
Corresponding Author
Thijs Stuyver
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Search for more papers by this authorRajeev Ramanan
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Department of Chemistry, Michigan Technological University, Houghton, MI, USA
Search for more papers by this authorDibyendu Mallick
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Department of Chemistry, Presidency University, Kolkata, 700073 India
Search for more papers by this authorCorresponding Author
Sason Shaik
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorCorresponding Author
Thijs Stuyver
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Search for more papers by this authorRajeev Ramanan
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Department of Chemistry, Michigan Technological University, Houghton, MI, USA
Search for more papers by this authorDibyendu Mallick
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Department of Chemistry, Presidency University, Kolkata, 700073 India
Search for more papers by this authorCorresponding Author
Sason Shaik
Department of Organic Chemistry, The Hebrew Unviersity of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorAbstract
This contribution follows the recent remarkable catalysis observed by Groves et al. in hydrogen-abstraction reactions by a) an oxoferryl porphyrin radical-cation complex [Por⋅+FeIV(O)Lax] and b) a hydroxoiron porphyrazine ferric complex [PyPzFeIII(OH)Lax], both of which involve positively charged substituents on the outer circumference of the respective macrocyclic ligands. These charge-coronated complexes are analogues of the biologically important Compound I (Cpd I) and synthetic hydroxoferric species, respectively. We demonstrate that the observed enhancement of the H-abstraction catalysis for these systems is a purely electrostatic effect, elicited by the local charges embedded on the peripheries of the respective macrocyclic ligands. Our findings provide new insights into how electrostatics can be employed to tune the catalytic activity of metalloenzymes and can thus contribute to the future design of new and highly efficient hydrogen-abstraction catalysts.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201916592-sup-0001-misc_information.pdf545.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem. Rev. 1996, 96, 2841–2888;
- 1bM. Costas, M. P. Mehn, M. P. Jensen, L. Que, Chem. Rev. 2004, 104, 939–986.
- 2A. S. Borovik, Chem. Soc. Rev. 2011, 40, 1870–1874.
- 3D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016–4093.
- 4
- 4aI. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, S. G. Sligar, Science 2000, 287, 1615–1622;
- 4bJ. Rittle, M. T. Green, Science 2010, 330, 933–937;
- 4cS. Chakrabarty, R. N. Austin, D. Deng, J. T. Groves, J. D. Lipscomb, J. Am. Chem. Soc. 2007, 129, 3514–3515;
- 4dR. Kretschmer, X. Zhang, M. Schlangen, H. Schwarz, Chem. Eur. J. 2011, 17, 3886–3892;
- 4eH. Hirao, P. Chuanprasit, Y. Y. Cheong, X. Wang, Chem. Eur. J. 2013, 19, 7361–7369;
- 4fS. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, Chem. Rev. 2010, 110, 949–1017.
- 5S. R. Bell, J. T. Groves, J. Am. Chem. Soc. 2009, 131, 9640–9641.
- 6H. Gao, J. T. Groves, J. Am. Chem. Soc. 2017, 139, 3938–3941.
- 7
- 7aA. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, M. H. Olsson, Chem. Rev. 2006, 106, 3210–3235;
- 7bV. V. Welborn, L. R. Pestana, T. Head-Gordon, Nat. Catal. 2018, 1, 649–655.
- 8
- 8aS. Shaik, R. Ramanan, D. Danovich, D. Mandal, Chem. Soc. Rev. 2018, 47, 5125–5145;
- 8bS. Ciampi, N. Darwish, H. M. Aitken, I. Diez-Pérez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146–5164;
- 8cT. Stuyver, D. Danovich, J. Joy, S. Shaik, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 10, e1438;
- 8dC. Geng, J. Li, T. Weiske, M. Schlangen, S. Shaik, H. Schwarz, J. Am. Chem. Soc. 2017, 139, 1684–1689;
- 8eC. Geng, J. Li, M. Schlangen, S. Shaik, X. Sun, N. Wang, T. Weiske, L. Yue, S. Zhou, H. Schwarz, Dalton Trans. 2018, 47, 15271–15277;
- 8fJ. Joy, T. Stuyver, S. Shaik, J. Am. Chem. Soc. 2020, 142, 3836–3850.
- 9G. Ricciardi, E. J. Baerends, A. Rosa, ACS Catal. 2016, 6, 568–579.
- 10H. Hirao, D. Kumar, W. Thiel, S. Shaik, J. Am. Chem. Soc. 2005, 127, 13007–13018.
- 11M. Lundberg, P. E. Siegbahn, J. Chem. Phys. 2005, 122, 224103.
- 12
- 12aJ. T. Groves, T. E. Nemo, J. Am. Chem. Soc. 1983, 105, 6243–6248;
- 12bN. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2012, 51, 5544–5555; Angew. Chem. 2012, 124, 5638–5650;
- 12cW. Lai, C. Li, H. Chen, S. Shaik, Angew. Chem. Int. Ed. 2012, 51, 5556–5578; Angew. Chem. 2012, 124, 5652–5676.
- 13S. Shaik, H. Chen, D. Janardanan, Nat. Chem. 2011, 3, 19–27.
- 14T. Stuyver, J. Huang, D. Mallick, D. Danovich, S. Shaik, J. Comput. Chem. 2020, 41, 74–82.
- 15K. D. Dubey, S. Shaik, Acc. Chem. Res. 2019, 52, 389–399.
- 16
- 16aA. D. Becke, Phys. Rev. A 1988, 38, 3098–3100;
- 16bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 16cP. J. Stephens, F. J. Devlin, C. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 17M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc.: Wallingford, CT, 2013.
- 18F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 19S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 20E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429–1437.
- 21
- 21aS. Shaik, D. Mandal, R. Ramanan, Nat. Chem. 2016, 8, 1091–1098;
- 21bA. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez, M. L. Coote, Nature 2016, 531, 88–91;
- 21cR. Meir, H. Chen, W. Lai, S. Shaik, ChemPhysChem 2010, 11, 301–310.
- 22M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327–335.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.