Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates
Maxim Ratushnyy
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
Search for more papers by this authorNikita Kvasovs
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
These authors contributed equally to this work.
Search for more papers by this authorSumon Sarkar
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Vladimir Gevorgyan
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
Search for more papers by this authorMaxim Ratushnyy
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
Search for more papers by this authorNikita Kvasovs
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
These authors contributed equally to this work.
Search for more papers by this authorSumon Sarkar
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Vladimir Gevorgyan
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607-7061 USA
Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX, 75080 USA
Search for more papers by this authorAbstract
A mild visible-light-induced Pd-catalyzed intramolecular C−H arylation of amides is reported. The method operates by cleavage of a C(sp2)−O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201915962-sup-0001-misc_information.pdf18.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews on Pd-catalyzed reactions, see:
- 1aE. Negishi in Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley, Chichester, 2003;
10.1002/0471212466 Google Scholar
- 1bA. De Meijere, F. Diederich in Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, p. 815;
10.1002/9783527619535.ch15 Google Scholar
- 1cN. Selander, K. J. Szabó, Chem. Rev. 2011, 111, 2048;
- 1dA. Molnár, Chem. Rev. 2011, 111, 2251;
- 1eC. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062; Angew. Chem. 2012, 124, 5150.
- 2P. Chuentragool, D. Kurandina, V. Gevorgyan, Angew. Chem. Int. Ed. 2019, 58, 11586; Angew. Chem. 2019, 131, 11710.
- 3M. Parasram, P. Chuentragool, D. Sarkar, V. Gevorgyan, J. Am. Chem. Soc. 2016, 138, 6340.
- 4For selected examples of the hydrogen-atom-translocation (HAT) step, see:
- 4aL. M. Stateman, K. M. Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569;
- 4bL. M. Stateman, E. A. Wappes, K. M. Nakafuku, K. M. Edwards, D. A. Nagib, Chem. Sci. 2019, 10, 2693;
- 4cZ. Zhang, L. M. Stateman, D. A. Nagib, Chem. Sci. 2019, 10, 1207;
- 4dS. A. Green, J. L. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 12779;
- 4eS. A. Green, S. W. M. Crossley, J. L. M. Matos, S. Vasquez-Cespedes, S. L. Shevick, R. A. Shenvi, Acc. Chem. Res. 2018, 51, 2628;
- 4fA.-F. Voica, A. Mendoza, W. R. Gutekunst, J. Otero Fraga, P. S. Baran, Nat. Chem. 2012, 4, 629.
- 5P. Chuentragool, M. Parasram, Y. Shi, V. Gevorgyan, J. Am. Chem. Soc. 2018, 140, 2465.
- 6M. Ratushnyy, M. Parasram, Y. Wang, V. Gevorgyan, Angew. Chem. Int. Ed. 2018, 57, 2712; Angew. Chem. 2018, 130, 2742.
- 7For examples of visible-light-induced Pd-catalyzed transformations of alkyl halides, see:
- 7aM. Parasram, P. Chuentragool, Y. Wang, Y. Shi, V. Gevorgyan, J. Am. Chem. Soc. 2017, 139, 14857;
- 7bD. Kurandina, M. Parasram, V. Gevorgyan, Angew. Chem. Int. Ed. 2017, 56, 14212; Angew. Chem. 2017, 129, 14400;
- 7cD. Kurandina, M. Rivas, M. Radzhabov, V. Gevorgyan, Org. Lett. 2018, 20, 357;
- 7dP. Chuentragool, D. Yadagiri, T. Morita, S. Sarkar, M. Parasram, Y. Wang, V. Gevorgyan, Angew. Chem. Int. Ed. 2019, 58, 1794; Angew. Chem. 2019, 131, 1808;
- 7eG.-Z. Wang, R. Shang, W.-M. Cheng, Y. Fu, J. Am. Chem. Soc. 2017, 139, 18307;
- 7fR. Kancherla, K. Muralirajan, B. Maity, C. Zhu, P. E. Krach, L. Cavallo, M. Rueping, Angew. Chem. Int. Ed. 2019, 58, 3412; Angew. Chem. 2019, 131, 3450;
- 7gW.-J. Zhou, G.-M. Cao, G. Shen, X.-Y. Zhu, Y.-Y. Gui, J.-H. Ye, L. Sun, L.-L. Liao, J. Li, D.-J. Yu, Angew. Chem. Int. Ed. 2017, 56, 15683; Angew. Chem. 2017, 129, 15889;
- 7hZ. Jiao, L. H. Lim, H. Hirao, J. S. Zhou, Angew. Chem. Int. Ed. 2018, 57, 6294; Angew. Chem. 2018, 130, 6402;
- 7iG.-Z. Wang, R. Shang, Y. Fu, Synthesis 2018, 50, 2908;
- 7jL. Sun, J.-H. Ye, W.-J. Zhou, X. Zeng, D.-G. Yu, Org. Lett. 2018, 20, 3049.
- 8For examples of visible-light-induced Pd-catalyzed transformations of alkyl redox-active esters, see:
- 8aM. Koy, F. Sandfort, A. Tlahuext-Aca, L. Quach, C. G. Daniliuc, F. Glorius, Chem. Eur. J. 2018, 24, 4552;
- 8bG.-Z. Wang, R. Shang, Y. Fu, Org. Lett. 2018, 20, 888;
- 8cW. M. Cheng, R. Shang, Y. Fu, Nat. Chem. 2018, 9, 5215.
- 9For selected reviews, see:
- 9aC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322;
- 9bK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035;
- 9cN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075;
- 9dJ. Xie, H. Jin, A. S. K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193;
- 9eM. Parasram, V. Gevorgyan, Chem. Soc. Rev. 2017, 46, 6227.
- 10For selected examples of Pd0/PdII-catalyzed reactions of aryl triflates, see:
- 10aK. Ritter, Synthesis 1993, 735;
- 10bJ. A. Carmona, V. Hornillos, P. Ramirez-Lopez, A. Ros, J. Iglesias-Siguenza, E. Gomez-Bengoa, R. Fernandez, J. M. Lassaletta, J. Am. Chem. Soc. 2018, 140, 11067;
- 10cC. Vila, V. Hornillos, M. Giannerini, M. Fananas-Mastral, B. L. Feringa, Chem. Eur. J. 2014, 20, 13078;
- 10dX.-F. Wu, B. Sundararaju, H. Neumann, P. H. Dixneuf, M. Beller, Chem. Eur. J. 2011, 17, 106;
- 10eX. Shen, A. M. Hyde, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14076;
- 10fX.-F. Wu, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 5284; Angew. Chem. 2010, 122, 5412;
- 10gJ. Takagi, K. Takahashi, T. Ishiyama, N. J. Miyaura, J. Am. Chem. Soc. 2002, 124, 8001;
- 10hA. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020;
- 10iH. H. Patel, M. B. Prater, S. O. Squire, Jr., M. S. Sigman, J. Am. Chem. Soc. 2018, 140, 5895;
- 10jQ. Yuan, M. S. Sigman, Chem. Eur. J. 2019, 25, 10823.
- 11For an example of dual Pd/Ir-catalyzed activation of aryl and alkenyl triflates, not involving hybrid Pd species, see: K. Shimomaki, T. Nakajima, J. Caner, N. Toriumi, N. Iwasawa, Org. Lett. 2019, 21, 4486.
- 12For examples of oxidative oxindole synthesis, involving intermediacy of free α-carbonyl radicals, see:
- 12aR.-J. Song, Y. Liu, Y.-X. Xie, J.-H. Li, Synthesis 2015, 47, 1195;
- 12bY.-X. Jia, E. P. Kündig, Angew. Chem. Int. Ed. 2009, 48, 1636; Angew. Chem. 2009, 121, 1664;
- 12cJ. R. Donald, R. J. K. Taylor, W. F. Petersen, J. Org. Chem. 2017, 82, 11288;
- 12dT. E. Hurst, R. M. Gorman, P. Drouhin, A. Perry, R. J. K. Taylor, Chem. Eur. J. 2014, 20, 14063;
- 12eA. Teichert, K. Jantos, K. Harms, A. Studer, Org. Lett. 2004, 6, 3477;
- 12fW. Kong, M. Casimiro, E. Merino, N. Nevado, J. Am. Chem. Soc. 2013, 135, 14480;
- 12gK. Matcha, R. Narayan, A. P. Antonchick, Angew. Chem. Int. Ed. 2013, 52, 7985; Angew. Chem. 2013, 125, 8143.
- 13
- 13aY. Jiang, S.-W. Yu, Y. Yang, Y.-L. Liu, X.-Y. Xu, Org. Biomol. Chem. 2018, 16, 6647;
- 13bJ. E. M. N. Klein, R. J. K. Taylor, Eur. J. Org. Chem. 2011, 6821;
- 13cJ. M. Hillgren, S. P. Marsden, J. Org. Chem. 2008, 73, 6459;
- 13dN. Deppermann, H. Thomanek, A. H. G. P. Prenzel, W. Maison, J. Org. Chem. 2010, 75, 5994.
- 14During preparation of this manuscript, Glorius and co-workers reported a Pd-catalyzed olefin difunctionalization protocol, operating via hybrid aryl Pd-radical intermediates, generated from aryl bromides: M. Koy, P. Bellotti, F. Katzenburg, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2020, 59, 2375; Angew. Chem. 2020, 132, 2395.
- 15W. Liu, X. Yang, Y. Gao, C. J. Li, J. Am. Chem. Soc. 2017, 139, 8621.
- 16
- 16aK. H. Shaughnessy, B. C. Hamann, J. F. Hartwig, J. Org. Chem. 1998, 63, 6546;
- 16bS. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402.
- 17A. Jutand, K. K. Hii, M. Thornton-Pett, J. M. Brown, Organometallics 1999, 18, 5367.
- 18For reviews on the synthesis of oxindoles, see:
- 18aP. Brandão, A. J. Burke, Tetrahedron 2018, 74, 4927;
- 18bZ.-Y. Cao, Y.-H. Wang, X.-P. Zeng, J. Zhou, Tetrahedron Lett. 2014, 55, 2571;
- 18cR. Dalpozzo, G. Bartol, G. Bencivenni, Chem. Soc. Rev. 2012, 41, 7247;
- 18dR. Dalpozzo, Adv. Synth. Catal. 2017, 359, 1772;
- 18eJ. J. Badillo, N. V. Hanhan, A. K. Franz, Curr. Opin. Drug Discovery Dev. 2010, 13, 758; For selected examples of the synthesis of oxindoles, see:
- 18fW. Sun, C. Chen, Y. Qi, J. Zhao, Y. Bao, B. Zhu, Org. Biomol. Chem. 2019, 17, 8358;
- 18gX. Li, M.-Y. Han, B. Wang, L. Wang, M. Wang, Org. Biomol. Chem. 2019, 17, 6612;
- 18hD. Shukla, S. A. Babu, Adv. Synth. Catal. 2019, 361, 2075;
- 18iA. Yen, M. Lautens, Org. Lett. 2018, 20, 4323.
- 19
- 19aE. Martinez de Marigorta, J. M. de Los Santos, A. M. Ochoa de Retana, J. Vicario, F. Palacios, Beilstein J. Org. Chem. 2019, 15, 1065;
- 19bK. Speck, T. Magauer, Beilstein J. Org. Chem. 2013, 9, 2048;
- 19cM. Ghandi, N. Zarezadeh, A. Abbasi, Org. Biomol. Chem. 2015, 13, 8211;
- 19dW. Lippmann, Chem. Abstr. 1981, 95, 61988m;
- 19eE. C. Taylor, P. Zhou, L. D. Jenning, Z. Mao, B. Hu, J.-G. Jun, Tetrahedron Lett. 1997, 38, 521;
- 19fV. Bisai, A. Suneja, V. K. Singh, Angew. Chem. Int. Ed. 2014, 53, 10737; Angew. Chem. 2014, 126, 10913;
- 19gW. Dong, G. Xu, W. Tang, Tetrahedron 2019, 75, 3239;
- 19hH. Miura, Y. Kimura, S. Terajima, T. Shishido, Eur. J. Org. Chem. 2019, 2807.
- 202-Hydroxybenzamide precursors can be readily accessed by the C−H oxidation method developed by Ackermann and co-workers:
- 20aL. Massignan, X. Tan, T. H. Meyer, R. Kuniyil, A. M. Messinis, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 3184; Angew. Chem. 2020, 132, 3210;
- 20bK. Raghuvanshi, D. Zell, L. Ackermann, Org. Lett. 2017, 19, 1278;
- 20cF. Yang, K. Ranch, K. Kettelhoit, L. Ackermann, Angew. Chem. Int. Ed. 2014, 53, 11285; Angew. Chem. 2014, 126, 11467;
- 20dF. Yang, L. Ackermann, Org. Lett. 2013, 15, 718.
- 21U.-Q. Chen, Z. Wang, Y. Wu, S. R. Wisniewski, J. X. Qiao, W. R. Ewing, M. D. Eastgate, J.-Q. Yu, J. Am. Chem. Soc. 2018, 140, 17884.
- 22See the Supporting Information for details.
- 23T. L. Andersen, S. Kramer, J. Overgaard, T. Skrydstrup, Organometallics 2017, 36, 2058.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.