Triangulenes: From Precursor Design to On-Surface Synthesis and Characterization
Jie Su
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorMykola Telychko
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorShaotang Song
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Jiong Lu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorJie Su
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorMykola Telychko
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorShaotang Song
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Search for more papers by this authorCorresponding Author
Jiong Lu
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore, 117546 Singapore
Search for more papers by this authorAbstract
Triangulene and its higher homologues are a class of zigzag-edged triangular graphene molecules (ZTGMs) with high-spin ground states. These open-shell molecules are predicted to host ferromagnetically coupled edge states with net spin values scaling with molecular size and are therefore considered promising candidates for future molecular spintronics applications. Unfortunately, the synthesis of unsubstituted [n]triangulenes and the direct observation of their edge states have been a long-standing challenge due to a high reactivity towards oxygen. However, recent advances in precursor design enabled the on-surface synthesis and characterization of unsubstituted [3]-, [4]-, and [5]triangulene. In this Minireview, we will highlight key aspects of this rapidly developing field, ranging from the principles of precursor design to synthetic strategies and characterization of a homologous series of triangulene molecules synthesized on-surface. We will also discuss challenges and future directions.
Conflict of interest
The authors declare no conflict of interest.
References
- 1E. Clar, D. G. Stewart, J. Am. Chem. Soc. 1953, 75, 2667–2672.
- 2M. Melle-Franco, Nat. Nanotechnol. 2017, 12, 292–293.
- 3Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197–204.
- 4M. Ezawa, Phys. Rev. B 2007, 76, 245415–245416.
- 5S. Fujii, T. Enoki, Acc. Chem. Res. 2013, 46, 2202–2210.
- 6W. Han, R. K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 2014, 9, 794–807.
- 7A. A. Ovchinnikov, Theor. Chim. Acta 1978, 47, 297–304.
- 8E. Lieb, Phys. Rev. Lett. 1989, 62, 1201–1204.
- 9A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109–162.
- 10M. Zarenia, A. Chaves, G. A. Farias, F. M. Peeters, Phys. Rev. B 2011, 84, 245403–245412.
- 11P. Potasz, A. D. Güçlü, P. Hawrylak, Phys. Rev. B 2010, 81, 033403.
- 12W. L. Wang, O. V. Yazyev, S. Meng, E. Kaxiras, Phys. Rev. Lett. 2009, 102, 195–194.
- 13J. Fernández-Rossier, J. J. Palacios, Phys. Rev. Lett. 2007, 99, 177204.
- 14G. Allinson, R. J. Bushby, J. L. Paillaud, D. Oduwole, K. Sales, J. Am. Chem. Soc. 1993, 115, 2062–2064.
- 15G. Allinson, R. J. Bushby, M. V. Jesudason, J. L. Paillaud, N. Taylor, J. Chem. Soc. Perkin Trans. 2 1997, 147–156.
- 16A. Gourdon, Angew. Chem. Int. Ed. 2008, 47, 6950–6953; Angew. Chem. 2008, 120, 7056–7059.
- 17S. Clair, D. G. de Oteyza, Chem. Rev. 2019, 119, 4717–4776.
- 18F. J. Giessibl, Rev. Mod. Phys. 2003, 75, 949–983.
- 19L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 2009, 325, 1110–1114.
- 20L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, M. Persson, Phys. Rev. Lett. 2011, 107, 086101.
- 21D. G. de Oteyza, P. Gorman, Y.-C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, et al., Science 2013, 340, 1434–1437.
- 22L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W. M. Abdel-Mageed, M. Jaspars, Nat. Chem. 2010, 2, 821–825.
- 23A. Riss, A. P. Paz, S. Wickenburg, H.-Z. Tsai, D. G. de Oteyza, A. J. Bradley, M. M. Ugeda, P. Gorman, H. S. Jung, M. F. Crommie, A. Rubio, F. R. Fischer, Nat. Chem. 2016, 8, 678–683.
- 24L. Gross, Nat. Chem. 2011, 3, 273–278.
- 25N. Pavliček, L. Gross, Nat. Rev. Chem. 2017, 1, 0005.
- 26F. J. Giessibl, Rev. Sci. Instrum. 2019, 90, 011101.
- 27M. Telychko, J. Su, A. Gallardo, Y. Gu, J. I. Mendieta-Moreno, D. Qi, A. Tadich, S. Song, P. Lyu, Z. Qiu, et al., Angew. Chem. Int. Ed. 2019, 58, 18591–18597; Angew. Chem. 2019, 131, 18764–18770.
- 28J. Krüger, F. García, F. Eisenhut, D. Skidin, J. M. Alonso, E. Guitián, D. Pérez, G. Cuniberti, F. Moresco, D. Peña, Angew. Chem. Int. Ed. 2017, 56, 11945–11948; Angew. Chem. 2017, 129, 12107–12110.
- 29J. I. Urgel, H. Hayashi, M. Di Giovannantonio, C. A. Pignedoli, S. Mishra, O. Deniz, M. Yamashita, T. Dienel, P. Ruffieux, H. Yamada, et al., J. Am. Chem. Soc. 2017, 139, 11658–11661.
- 30M. Zugermeier, M. Gruber, M. Schmid, B. P. Klein, L. Ruppenthal, P. Müller, R. Einholz, W. Hieringer, R. Berndt, H. F. Bettinger, et al., Nanoscale 2017, 9, 12461–12469.
- 31R. Zuzak, R. Dorel, M. Krawiec, B. Such, M. Kolmer, M. Szymonski, A. M. Echavarren, S. Godlewski, ACS Nano 2017, 11, 9321–9329.
- 32R. Zuzak, R. Dorel, M. Kolmer, M. Szymonski, S. Godlewski, A. M. Echavarren, Angew. Chem. Int. Ed. 2018, 57, 10500–10505; Angew. Chem. 2018, 130, 10660–10665.
- 33J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, et al., Nature 2010, 466, 470–473.
- 34A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, P. Liljeroth, Nat. Commun. 2015, 6, 10177.
- 35L. Talirz, H. Söde, T. Dumslaff, S. Wang, J. R. Sanchez-Valencia, J. Liu, P. Shinde, C. A. Pignedoli, L. Liang, V. Meunier, et al., ACS Nano 2017, 11, 1380–1388.
- 36P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, et al., Nature 2016, 531, 489–492.
- 37J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, et al., Nat. Nanotechnol. 2014, 9, 896–900.
- 38Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, M. F. Crommie, Nat. Nanotechnol. 2015, 10, 156–160.
- 39G. D. Nguyen, H.-Z. Tsai, A. A. Omrani, T. Marangoni, M. Wu, D. J. Rizzo, G. F. Rodgers, R. R. Cloke, R. A. Durr, Y. Sakai, et al., Nat. Nanotechnol. 2017, 12, 1077–1082.
- 40M. Treier, C. A. Pignedoli, T. Laino, R. Rieger, K. Müllen, D. Passerone, R. Fasel, Nat. Chem. 2011, 3, 61–67.
- 41P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, et al., ACS Nano 2012, 6, 6930–6935.
- 42C. Rogers, C. Chen, Z. Pedramrazi, A. A. Omrani, H.-Z. Tsai, H. S. Jung, S. Lin, M. F. Crommie, F. R. Fischer, Angew. Chem. Int. Ed. 2015, 54, 15143–15146; Angew. Chem. 2015, 127, 15358–15361.
- 43O. Gröning, S. Wang, X. Yao, C. A. Pignedoli, G. Borin Barin, C. Daniels, A. Cupo, V. Meunier, X. Feng, A. Narita, et al., Nature 2018, 560, 209–213.
- 44D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao, H. Rodriguez, S. G. Louie, M. F. Crommie, F. R. Fischer, Nature 2018, 560, 204–208.
- 45N. Pavliček, A. Mistry, Z. Majzik, N. Moll, G. Meyer, D. J. Fox, L. Gross, Nat. Nanotechnol. 2017, 12, 308–311.
- 46N. Pavliček, B. Schuler, S. Collazos, N. Moll, D. Pérez, E. Guitián, G. Meyer, D. Peña, L. Gross, Nat. Chem. 2015, 7, 623–628.
- 47B. Schuler, S. Fatayer, F. Mohn, N. Moll, N. Pavliček, G. Meyer, D. Peña, L. Gross, Nat. Chem. 2016, 8, 220–224.
- 48N. Pavliček, Z. Majzik, S. Collazos, G. Meyer, D. Pérez, E. Guitián, D. Peña, L. Gross, ACS Nano 2017, 11, 10768–10773.
- 49S. Mishra, D. Beyer, K. Eimre, J. Liu, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, R. Fasel, X. Feng, et al., J. Am. Chem. Soc. 2019, 141, 10621–10625.
- 50J. Su, M. Telychko, P. Hu, G. Macam, P. Mutombo, H. Zhang, Y. Bao, F. Cheng, Z.-Q. Huang, Z. Qiu, et al., Sci. Adv. 2019, 5, eaav7717.
- 51L. Talirz, H. Söde, J. Cai, P. Ruffieux, S. Blankenburg, R. Jafaar, R. Berger, X. Feng, K. Müllen, D. Passerone, et al., J. Am. Chem. Soc. 2013, 135, 2060–2063.
- 52F. Mohn, B. Schuler, L. Gross, G. Meyer, Appl. Phys. Lett. 2013, 102, 073109–5.
- 53J. Li, N. Merino-Díez, E. Carbonell-Sanromà, M. Vilas-Varela, D. G. de Oteyza, D. Peña, M. Corso, J. I. Pascual, Sci. Adv. 2018, 4, eaaq0582.
- 54P. Hapala, G. Kichin, C. Wagner, F. S. Tautz, R. Temirov, P. Jelínek, Phys. Rev. B 2014, 90, 1989–1989.
- 55N. Pavliček, P. Gawel, D. R. Kohn, Z. Majzik, Y. Xiong, G. Meyer, H. L. Anderson, L. Gross, Nat. Chem. 2018, 10, 853–858.
- 56S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. M. U. llen, R. Fasel, P. Ruffieux, Nat. Commun. 2016, 7, 11507.
- 57H. Oka, O. O. Brovko, M. Corbetta, V. S. Stepanyuk, D. Sander, J. Kirschner, Rev. Mod. Phys. 2014, 86, 1127–1168.
- 58P. Willke, W. Paul, F. D. Natterer, K. Yang, Y. Bae, T. Choi, J. Fernández-Rossier, A. J. Heinrich, C. P. Lutz, Sci. Adv. 2018, 4, eaaq1543.
- 59K. Fukui, J. Inoue, T. Kubo, S. Nakazawa, T. Aoki, Y. Morita, K. Yamamoto, K. Sato, D. Shiomi, K. Nakasuji, et al., Synth. Met. 2001, 121, 1824–1825.
- 60M. E. Sandoval-Salinas, A. Carreras, D. Casanova, Phys. Chem. Chem. Phys. 2019, 21, 9069–9076.
- 61S. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey, E. Meyer, A. S. Foster, Sci. Adv. 2018, 4, eaar7181.
- 62S. Saito, S. Osumi, S. Yamaguchi, A. S. Foster, P. Spijker, E. Meyer, S. Kawai, Nat. Commun. 2015, 6, 8098.
- 63W. L. Wang, S. Meng, E. Kaxiras, Nano Lett. 2008, 8, 241–245.
- 64L. A. Agapito, N. Kioussis, E. Kaxiras, Phys. Rev. B 2010, 82, 201411.
- 65W.-L. Ma, S.-S. Li, Phys. Rev. B 2012, 86, 045449.
- 66A. D. Güçlü, P. Potasz, P. Hawrylak, Phys. Rev. B 2011, 84, 035425.
- 67A. D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Phys. Rev. Lett. 2009, 103, 246805.
- 68S. Wickenburg, J. Lischner, H.-Z. Tsai, A. A. Omrani, A. Riss, C. Karrasch, A. Bradley, H. S. Jung, R. Khajeh, D. Wong, et al., Nat. Commun. 2016, 7, 13553.
- 69J. Lu, H.-Z. Tsai, A. N. Tatan, S. Wickenburg, A. A. Omrani, D. Wong, A. Riss, E. Piatti, K. Watanabe, T. Taniguchi, et al., Nat. Commun. 2019, 10, 477.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.